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> On CPU and GPU → speedup for large systems

A Python library to simulate
• The Schrödinger equation
• The Lindblad master equation
• The stochastic master equation

dynamiqs in a nutshell

> With differentiable solvers → to compute gradients
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H = g(a + a†)b†b
L = κ2(a2 − α2)

dynamiqs on GPUdimension
32 × 32 = 1024
64 × 64 = 4096

CPU: AMD Ryzen 7 7700X 
GPU: NVIDIA RTX 4090

e.g. simulate a CNOT between 
two cat qubits QuTiP on CPU

GPU-accelerated solvers
> To simulate large quantum systems

1 minute 30 seconds 
6 hours

2.4 seconds
6 minutes

> To simulate the same system with different parameters

for loop on CPU dynamiqs on GPU

for loop 
 simulations of size b (n, n)

0 T

batching 
1 simulation of size (b, n, n)

0 T

=
(b, n, n)

ρ(1)
0 ρ(1)

T

ρ(2)
0 ρ(2)

T

… …

ρ(b)
0 ρ(b)

T

time time

VS

e.g. 10,000 simulations of a 5-levels 
transmon (sweep  and )δ κ

→ 30-60x faster than QuTiP
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H = − δ/2 a†2a2 + ϵ*a + ϵa†

L = κa

7 minutes 10 seconds



dρt

dt
= ℒt(ρt)Example: simulate Lindblad

with an ODE solver

GPU-accelerated solvers
> Simulating a quantum systems
↳ with ODE solvers, propagator, Monte-Carlo, etc…

≈ ρt − i(Ht ρt − ρtHt)

+∑
k

(Lk ρtL†
k −

1
2

L†
k Lk ρt −

1
2

ρtL†
k Lk)

e.g. 3 coupled oscillators 
truncated at 32 

↳ one billion elements

= matrix products

dt

ρdt

0 T

ρ0 ρT

2dt

ρ2dt

…

ρt+dt = ρt + ℒt(ρt)dt + 𝒪(dt2) (Euler method)

> Leverage specialised hardware

CPU GPU
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can perform many 
different computations

can only perform 
basic operations
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(thousands of cores)(8 - 32 cores)

> Leverage specialised hardware

CPU GPU
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Differentiable solvers

> Many applications: quantum optimal control, sensitivity analysis, state tomography, etc…

data space

measure data

yexp

with parameters 
θ = (θ1, …, θn) ∈ ℝn

model  H(θ), ρ0(θ), {Lk(θ)}

quantum system

y(θguess)

fit parameters 
minimise  f(θ) = ∥y(θ) − yexp

∥2

θ1

θ2

θtrue

θguess

parameters space

🎉

∇θ f(θ)

> Efficient parameter search: need the gradient

> Calibration and control → optimisation problems, e.g. parameters estimation
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gradient
∇θ f(θ)

Differentiable solvers

parameters 
θ = (θ1, …, θn) ∈ ℝn

function of the state 
f(ρT) = f(θ) ∈ ℝ

quantum solver 
H(θ), ρ0(θ), {Lk(θ)}, T evolved state

ρT

update parameters
θ ← θ + γ∇θ f(θ)
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gradient
∇θ f(θ)

Differentiable solvers

parameters 
θ = (θ1, …, θn) ∈ ℝn

function of the state 
f({ρtj}) = f(θ) ∈ ℝ

quantum solver 
H(θ), ρ0(θ), {Lk(θ)}, {tj(θ)} evolved state

{ρtj}

update parameters
θ ← θ + γ∇θ f(θ)

> Computing the gradient
• Automatic differentiation
• Adjoint state method
• Checkpointing

> Project philosophy: fast and reliable building block
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→ fast but memory 

→ slower but memory 

→ tradeoff between speed and memory

𝒪(nsteps)

𝒪(1)



Example
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> QuTiP-like API
> All functions work with QuTip objects
> Running on a GPU = one extra line 



Python code

foo.py
Python file

PyThon code + JAX

Python file
foo.py

> Linear algebra on GPUs + automatic differentiation → machine learning community

> JAX by Google: « NumPy on GPU with automatic differentiation »

Under the hood

CPU/GPU optimized 
machine-level code

compile XLAPython Virtual Machine
(reads and executes the bytecode line-by-line)

❌ interpretation overhead 
dynamic type checking 
no low-level optimizations

❌

❌

compile

bytecode
foo.pyc

operation fusion

optimize

computation graph

tracing

loop unrolling

memory access
✅

✅

✅

optimizations

+
x
y ×z
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And more!

> Solvers
• ODE solvers from the Diffrax library 
↳ modern ODE solvers (Tsit5, PID controllers) 
↳ optimal online checkpointing for gradient computation 
↳ implicit ODE solvers 
↳ adaptive step size SME solvers

• Quantum-tailored solvers 
↳ preserve state trace and positivity

• Easily implement your own solvers

• Custom sparse format (coming soon) 
↳ more than x10 speedup for large systems

• Krylov subspace methods for propagators (coming soon)

> Gradient
• Compute gradient w.r.t. evolution time

• Compute higher order derivatives 
↳ e.g. the Hessian

> Utilities
• Support multiple Hamiltonian formats 
↳ constant, piecewise-constant, callable, …

• Support for time-dependent jump operators

• User-defined save function during the evolution 
↳ e.g. partial trace, purity, Fock population, etc…

• Beautiful plotting functions

• All functions work on batched arrays

• Parallelisation across multiple CPUs/GPUs

> Library
• Modern software development practices 
↳ e.g. analytical tests in CI for states and gradients

• Carefully written documentation
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> An open-source Python library
> Developed by physicists and developers
> Available on GitHub

GPU-accelerated and differentiable 
quantum simulations

https://github.com/dynamiqs/dynamiqs


