

dynamiqs: a library for GPU-accelerated and differentiable simulations of quantum systems

Ronan Gautier

QuantumÉTS, 15th May 2024

dynamiqs in a nutshell

A Python library to simulate

- The Schrödinger equation
- The Lindblad master equation
- The stochastic master equation
- > On CPU and GPU → speedup for large systems
- > With **differentiable** solvers → to compute gradients

- > To simulate large quantum systems
- → 30-60x faster than QuTiP

e.g. simulate a CNOT between two cat qubits

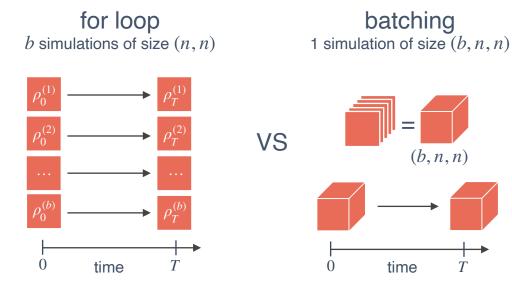
$$H = g(a + a^{\dagger})b^{\dagger}b$$

$$L = \sqrt{\kappa_2}(a^2 - \alpha^2)$$

dimension	QuTiP on CPU	dynamiqs on GPU
$32 \times 32 = 1024$	1 minute 30 seconds	2.4 seconds
$64 \times 64 = 4096$	6 hours	6 minutes

CPU: AMD Ryzen 7 7700X GPU: NVIDIA RTX 4090

> To simulate the same system with different parameters



e.g. 10,000 simulations of a 5-levels transmon (sweep δ and κ)

$$H = -\delta/2 \ a^{\dagger 2}a^2 + \epsilon *a + \epsilon a^{\dagger}$$

$$L = \sqrt{\kappa}a$$

👴 for loop on CPU	dynamiqs on GPU
7 minutes	10 seconds

- > Simulating a quantum systems
 - = matrix products
 - → with ODE solvers, propagator, Monte-Carlo, etc...

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 \\ c_7 & c_8 & c_9 \end{bmatrix}$$

e.g. 3 coupled oscillators truncated at 32

→ one billion elements

> Leverage **specialised hardware**

Example: simulate Lindblad $\frac{\mathrm{d}\rho_t}{\mathrm{d}t} = \mathcal{L}_t(\rho_t)$ with an ODE solver $\rho_0 \quad \rho_{\mathrm{d}t} \quad \rho_{\mathrm{2d}t} \qquad \rho_T$ $0 \quad \mathrm{d}t \quad 2\mathrm{d}t \qquad \cdots \qquad T$ $\rho_{t+\mathrm{d}t} = \rho_t + \mathcal{L}_t(\rho_t)\mathrm{d}t + \mathcal{O}(\mathrm{d}t^2) \quad \text{(Euler method)}$ $\approx \rho_t - i(H_t\rho_t - \rho_t H_t)$ $+ \sum_t \left(L_k \rho_t L_k^\dagger - \frac{1}{2} L_k^\dagger L_k \rho_t - \frac{1}{2} \rho_t L_k^\dagger L_k \right)$

GPU

> Simulating a quantum systems = I

= matrix products

→ with ODE solvers, propagator, Monte-Carlo, etc...

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 \\ c_7 & c_8 & c_9 \end{bmatrix}$$

e.g. 3 coupled oscillators truncated at 32

→ one billion elements

> Leverage specialised hardware

Example: simulate Lindblad $\frac{\mathrm{d}\rho_t}{\mathrm{d}t} = \mathcal{L}_t(\rho_t)$ with an ODE solver $\rho_0 \quad \rho_{\mathrm{d}t} \quad \rho_{\mathrm{2d}t} \qquad \rho_T$ $0 \quad \mathrm{d}t \quad 2\mathrm{d}t \qquad \cdots \qquad T$ $\rho_{t+\mathrm{d}t} = \rho_t + \mathcal{L}_t(\rho_t)\mathrm{d}t + \mathcal{O}(\mathrm{d}t^2) \quad \text{(Euler method)}$ $\approx \rho_t - i(H_t\rho_t - \rho_t H_t)$

 $+\sum_{t}\left(L_{k}
ho_{t}L_{k}^{\dagger}-rac{1}{2}L_{k}^{\dagger}L_{k}
ho_{t}-rac{1}{2}
ho_{t}L_{k}^{\dagger}L_{k}
ight)$

GPU

> Simulating a quantum systems

= matrix products

→ with ODE solvers, propagator, Monte-Carlo, etc...

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 \\ c_7 & c_8 & c_9 \end{bmatrix}$$

e.g. 3 coupled oscillators truncated at 32
→ one billion elements

> Leverage **specialised hardware**

Example: simulate Lindblad $\frac{\mathrm{d}\rho_t}{\mathrm{d}t} = \mathcal{L}_t(\rho_t)$ with an ODE solver $\begin{array}{ccccc} \rho_0 & \rho_{\mathrm{d}t} & \rho_{2\mathrm{d}t} & \rho_T \\ \hline & & & & & \\ 0 & \mathrm{d}t & 2\mathrm{d}t & \cdots & T \\ \end{array}$ $\rho_{t+\mathrm{d}t} = \rho_t + \mathcal{L}_t(\rho_t)\mathrm{d}t + \mathcal{O}(\mathrm{d}t^2) \quad \text{(Euler method)}$ $\approx \rho_t - i(H_t\rho_t - \rho_t H_t) \\ + \sum_{t} \left(L_k \rho_t L_k^\dagger - \frac{1}{2} L_k^\dagger L_k \rho_t - \frac{1}{2} \rho_t L_k^\dagger L_k \right)$

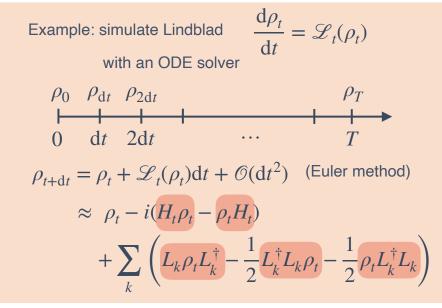
GPU

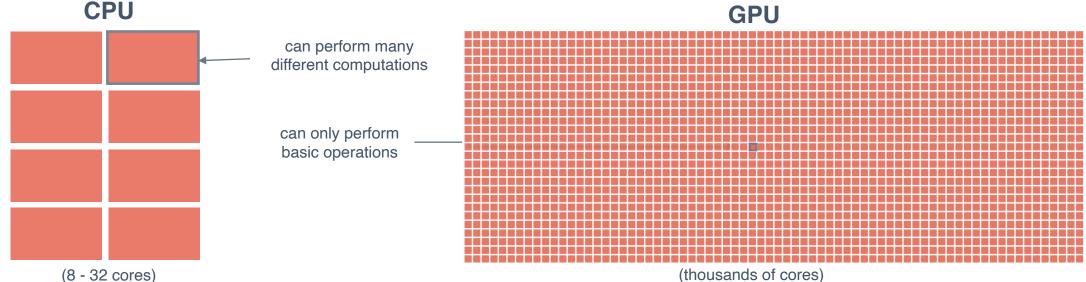
- > Simulating a quantum systems = matrix products
 - → with ODE solvers, propagator, Monte-Carlo, etc...

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 \\ c_7 & c_8 & c_9 \end{bmatrix}$$

e.g. 3 coupled oscillators truncated at 32 **→** one billion elements

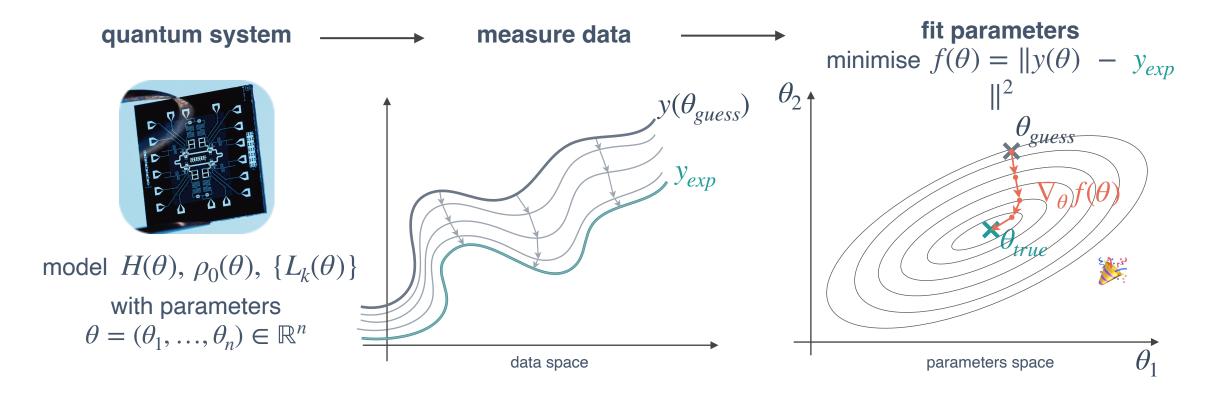
> Leverage specialised hardware





Differentiable solvers

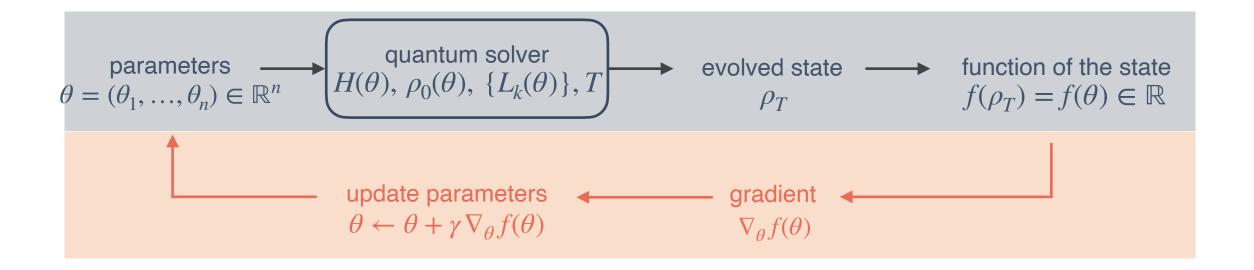
> Calibration and control → optimisation problems, e.g. parameters estimation



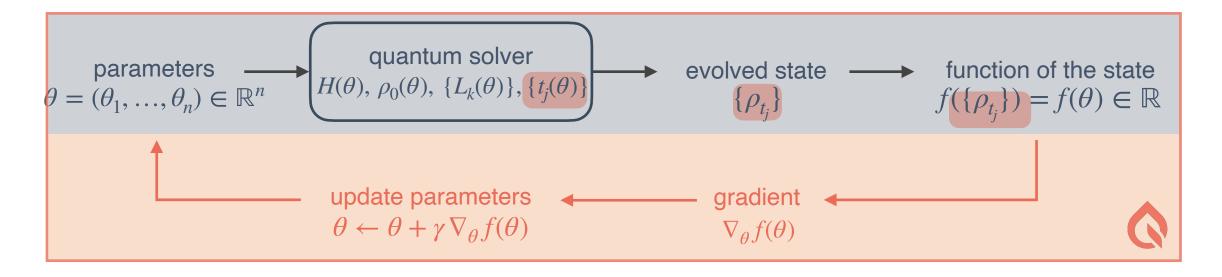
- > Efficient parameter search: need the gradient
- > Many applications: quantum optimal control, sensitivity analysis, state tomography, etc...

Leung et al. (2017)

Differentiable solvers



Differentiable solvers

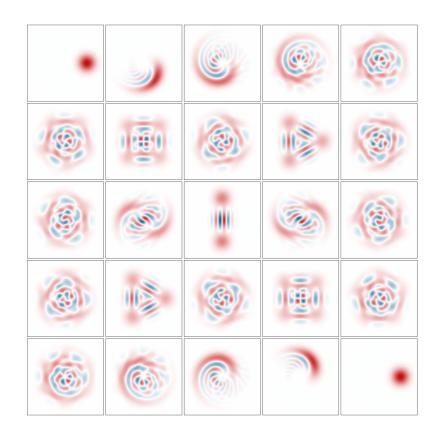


- > Project philosophy: fast and reliable building block
- > Computing the gradient
 - Automatic differentiation
 - Adjoint state method
 - Checkpointing

- \rightarrow fast but memory $\mathcal{O}(n_{steps})$
- \rightarrow slower but memory $\mathcal{O}(1)$
- → tradeoff between speed and memory

Example


```
import dynamiqs as dq
import numpy as np
n = 16
a = dq.destroy(n)
H = dq.dag(a) @ dq.dag(a) @ a @ a # Kerr Hamiltonian
psi0 = dq.coherent(n, 2.0) # initial state
tsave = np.linspace(0, np.pi, 101) # save times
result = dq.sesolve(H, psi0, tsave)
dq.plot_wigner_mosaic(result.states, n=25, nrows=5, xmax=3.5)
```

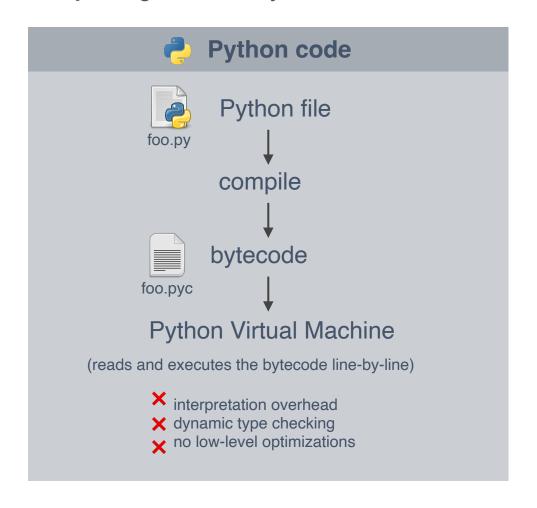


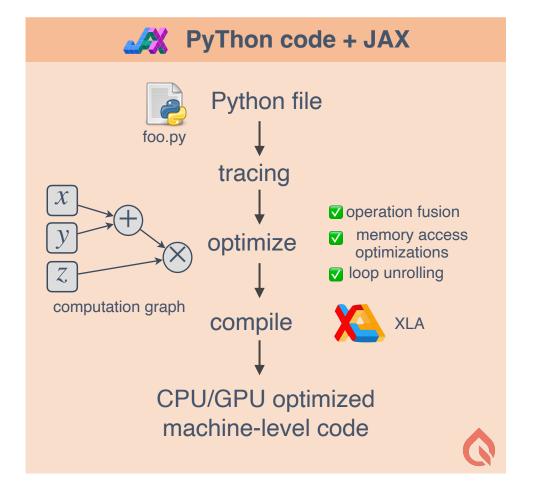
- > QuTiP-like API
- > All functions work with QuTip objects
- > Running on a GPU = one extra line

Under the hood

60

- > Linear algebra on GPUs + automatic differentiation → machine learning community
- > JAX by Google: « NumPy on GPU with automatic differentiation »





And more!

> Solvers

- ODE solvers from the Diffrax library
 - → modern ODE solvers (Tsit5, PID controllers)
 - → optimal online checkpointing for gradient computation
 - → implicit ODE solvers
 - → adaptive step size SME solvers
- Quantum-tailored solvers
 - → preserve state trace and positivity
- · Easily implement your own solvers
- Custom sparse format (coming soon)
 - → more than x10 speedup for large systems
- Krylov subspace methods for propagators (coming soon)

> Gradient

- · Compute gradient w.r.t. evolution time
- Compute higher order derivatives
 - → e.g. the Hessian

> Utilities

- Support for time-dependent jump operators
- User-defined save function during the evolution

 → e.g. partial trace, purity, Fock population, etc...
- Beautiful plotting functions
- · All functions work on batched arrays
- Parallelisation across multiple CPUs/GPUs

> Library

- Carefully written documentation

And more!

> Solvers

- ODE solvers from the Diffrax library
 - → modern ODE solvers (Tsit5, PID controllers)
 - → optimal online checkpointing for gradient computation
 - → implicit ODE solvers
 - → adaptive step size SME solvers
- Quantum-tailored solvers
 - → preserve state trace and positivity
- · Easily implement your own solvers
- Custom sparse format (coming soon)

 → more than x10 speedup for large systems
- Krylov subspace methods for propagators (coming soon)

> Gradient

- · Compute gradient w.r.t. evolution time

> Utilities

- Support for time-dependent jump operators
- User-defined save function during the evolution

 → e.g. partial trace, purity, Fock population, etc...
- Beautiful plotting functions
- · All functions work on batched arrays
- Parallelisation across multiple CPUs/GPUs

> Library

- · Carefully written documentation

GPU-accelerated and differentiable quantum simulations

- > An open-source Python library
- > Developed by **physicists** and **developers**
- > Available on GitHub

