Combined Dissipative and Hamiltonian Confinement of Cat Qubits

Ronan Gautier, Alain Sarlette, Mazyar Mirrahimi

QUANTIC, Inria Paris

arXiv:2112.05545 (to appear in PRX Quantum)

Cat qubits are exponentially noise-biased qubits

Bloch Sphere Representation of a Cat Qubit

Cat states: coherent superposition of coherent states in a quantum oscillator

Cat qubits are exponentially noise-biased towards phase-flips

(Experimental data from Lescanne, Leghtas et al., 2019)

Fault-tolerent quantum computation with cat qubits

Bloch Sphere Representation of a Cat Qubit

For biased-noise qubits, quantum error correction (QEC) is simpler than for regular qubits

- Elongated surface code
- XZZX surface code
- 1D Repetition code

To reach QEC thresholds, there are mainly three pathways:

- Improve engineering $\kappa_1
 ightarrow 0$
- Improve QEC codes $p_{\mathrm{th}}
 ightarrow 1$
- Improve gate designs $p_{
 m gate}
 ightarrow 0$

Chamberland et al., PRXQ (2020); Bonilla Ataides et al., Nat.Comm. (2021)

Confining a cat qubit with engineered Hamiltonians or dissipation

 $C_{\alpha} = \operatorname{span}\{|+\alpha\rangle\langle+\alpha|, |+\alpha\rangle\langle-\alpha|, |-\alpha\rangle\langle+\alpha|, |-\alpha\rangle\langle-\alpha|\}$

To confine an oscillator to the cat qubit codespace, two main approaches exist. $\dot{
ho}=\hat{\mathcal{L}}
ho$

Two-photon dissipation $\hat{\mathcal{L}}_2 = \kappa_2 \mathcal{D}[\hat{a}^2 - \alpha^2]$

- $C_{\boldsymbol{\alpha}}$ is a subspace of fixed points

 $\hat{\mathcal{L}}_2 \hat{\rho} = 0 \quad (\forall \hat{\rho} \in \mathcal{C}_\alpha)$

- Any initial state converges asymptotically towards $\,C_{\alpha}\,$

 $\hat{\rho}(t) \xrightarrow[t \to \infty]{} \hat{\rho}_{\infty} \in \mathcal{C}_{\alpha}$

Autonomous stabilization

$$\begin{split} \text{Kerr Hamiltonian} \quad \hat{\mathcal{L}} &= i \left[\hat{H}_{\text{Kerr}}, \cdot \right] \\ \text{where } \hat{H}_{\text{Kerr}} &= K (\hat{a}^{\dagger 2} - \alpha^{*2}) (\hat{a}^2 - \alpha^2) \end{split}$$

• $|{\pm}\alpha\rangle$ are degenerate eigenstates

 $\hat{H}_{\mathrm{Kerr}} \left| \pm \alpha \right\rangle \propto \left| \pm \alpha \right\rangle$

- $|{\pm}\alpha\rangle$ are gapped from other eigenstates

 $|E_{|\pm\alpha\rangle} - E_{|\psi\rangle}| \gg \kappa_{\rm noise}$

Gap protection (adiabatic theorem, perturbation theory)

Kerr confinement provides low-error gate designs, but is subject to thermal and dephasing noise.

Why is the Kerr not exponentially protected?

A realistic Kerr cat qubit is subject to $\dot{\rho} = \mathcal{L}_{\text{Kerr}}\rho + \kappa_1(1+n_{\text{th}})\mathcal{D}[\hat{a}]\rho + \kappa_1 n_{\text{th}}\mathcal{D}[\hat{a}^{\dagger}]\rho + \kappa_{\phi}\mathcal{D}[\hat{a}^{\dagger}\hat{a}]\rho$

1 System initially in the cat codespace

2 At t=0, thermal excitation event with probability rate $\kappa_l = \kappa_1 n_{\rm th} + |\alpha|^2 \kappa_{\phi}$ 3 All Kerr eigenstates are populated

4 Dephasing of +/- branches induces bit-flip

- Suppressed exponentially for $|\alpha|^2\gtrsim 4n$
- Diverge with n at $|\alpha|^2 < 4n$

- $\lambda_n = \sum_{\pm} |\langle \phi_n^{\pm} | \hat{a}^{\dagger} | \alpha \rangle|^2 / 2$
- Not exponentially small !

Why is the Kerr not exponentially protected?

A realistic Kerr cat qubit is subject to $\dot{\rho} = \mathcal{L}_{\text{Kerr}}\rho + \kappa_1(1+n_{\text{th}})\dot{\mathcal{D}}[\hat{a}]\rho + \kappa_1 n_{\text{th}}\mathcal{D}[\hat{a}^{\dagger}]\rho + \kappa_{\phi}\dot{\mathcal{D}}[\hat{a}^{\dagger}\hat{a}]\rho$

- (1) System initially in the cat codespace ϵ
- 2 At t=0, thermal excitation event with probability rate $\kappa_l = \kappa_1 n_{\rm th} + |\alpha|^2 \kappa_{\phi}$
- 3 All Kerr eigenstates are populated
- 4 Dephasing of +/- branches induces bit-flip

First-order estimation of bit-flip errors

leakage overlap dephasing
$$p_X(t) = \left[\kappa_l t \sum_{n>0} \lambda_n \left[1 - \operatorname{sinc}(\delta_n t) \right] \right]$$

$$|\alpha|^2 = 12$$

$$t = 1/K$$

$$p_X(t)/\kappa_l t \approx 4 \times 10^{-4}$$

$$\exp(-2|\alpha|^2) \approx 4 \times 10^{-11}$$

Gautier et al., arXiv (2021)

How to benefit from the best of both worlds?

To benefit from the best of both worlds, why not simply combine both confinement methods?

$$\dot{
ho} = \hat{\mathcal{L}}_2
ho + \hat{\mathcal{L}}_{\mathrm{Kerr}}
ho + \cdots$$

Idling qubit

To conserve the exponential error bias

 $\mathbf{k}/\kappa_2 \lesssim 0.3$

 $T_{\text{gate}} \left[\kappa_2^{-1} \right]$

 $T_{\text{gate}} \left[\kappa_2^{-1} \right]$

Single-qubit Z gate

Confinement with a Two-Photon Exchange Hamiltonian

New cat qubit Hamiltonian confinement coined <u>Two-Photon Exchange</u> (TPE)

$$\hat{H}_{\text{TPE}} = g_2(\hat{a}^2 - \alpha^2)\hat{\sigma}_+ + \text{h.c.}$$

- Gapped Hamiltonian
- Degenerate subspace given by the cat qubit

•
$$(\hat{H}_{\text{TPE}}/g_2)^2 = (\hat{a}^2 - \alpha^2)^{\dagger} (\hat{a}^2 - \alpha^2) |g\rangle \langle g| + (\hat{a}^2 - \alpha^2) (\hat{a}^2 - \alpha^2)^{\dagger} |e\rangle \langle e|$$

= $(\hat{H}_{\text{Kerr}}/K) |g\rangle \langle g| + (\hat{H}'_{\text{Kerr}}/K) |e\rangle \langle e|$

"TPE" =
$$\sqrt{$$
 "Kerr"

•	Bounded	by	g_2at	$ \alpha ^2$	< 4n
---	---------	----	---------	--------------	------

Gautier et al., arXiv (2021)

How to benefit from the best of both worlds?

To benefit from the best of both worlds, it is better to combine TPE and dissipation confinement !

$$\dot{\rho} = \hat{\mathcal{L}}_2 \rho + \hat{\mathcal{L}}_{\mathrm{TPE}} \rho + \cdots$$

Idling qubit

To conserve the exponential error bias

 $\Rightarrow g_2/\kappa_2 \lesssim 10$

Single-qubit Z gate

Phase errors induced by the gate

▶ x400 gain on gate-induced errors

Away from the bias-preserving point, gate-induced errors can further be reduced at the cost of additional bit-flip errors.

$p_Z = \frac{1}{1 + \frac{4g_2^2}{\kappa_2^2}} \frac{\pi^2}{16|\alpha|^4 \kappa_2 T_{\text{gate}}}$

Two-qubit CNOT gate

- Up to x100 two-qubit gate fidelity improvement
- Reduced leakage compared to dissipative gate designs

Engineering a combined TPE and dissipative confinement

Potential energy of the ATS (Assymetrically Threaded SQUID) $U(\varphi) = \frac{1}{2}E_L\varphi^2 - 2E_J\left[\varepsilon(t)\sin(\varphi) - \eta\cos(\varphi)\right]$

Dissipative cat qubit circuit design

Combined TPE + Diss. circuit proposition

Thanks for your attention!

Gautier et al., arXiv (2021).