Ronan Gautier

High-Fidelity Control and Stabilization of **Cat Qubits**

Director /	Alain Sarlette
Reviewers /	Liang Jiang Clément Pellegrini
Examinators /	Christiane Koch Jean-Michel Raimond Mario Sigalotti
Invited /	Mazyar Mirrahimi Alexandre Blais

PhD defence / 4th December 2023

Feynman's 1981 talk

The full description of quantum mechanics [...] 66 cannot be simulated with a normal computer.

"

Richard Feynman at Caltech, circa 1980

Feynman's 1981 talk

66 The full description of quantum mechanics [...] cannot be simulated with a normal computer.

Can you do it with a new kind of computer a quantum computer? [...] It's not a Turing machine, but a machine of a different kind.

"

Richard Feynman at Caltech, circa 1980

Feynman's 1981 talk

C The full description of quantum mechanics [...] *cannot be simulated with a normal computer*.

Can you do it with a new kind of computer — a quantum computer? [...] *It's not a Turing machine, but a machine of a different kind.*

Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical.

Richard Feynman at Caltech, circa 1980

Feynman's 1981 talk

66 The full description of quantum mechanics [...] cannot be simulated with a normal computer.

Can you do it with a new kind of computer a quantum computer? [...] It's not a Turing machine, but a machine of a different kind.

Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical.

And by golly it's a wonderful problem because it doesn't look so easy.

Richard Feynman at Caltech, circa 1980

Feynman's 1981 talk

66 The full description of quantum mechanics [...] cannot be simulated with a normal computer.

Can you do it with a new kind of computer a quantum computer? [...] It's not a Turing machine, but a machine of a different kind.

Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical.

And by golly it's a wonderful problem because it doesn't look so easy.

Classical bit

Richard Feynman at Caltech, circa 1980

Quantum bit

Feynman's talk on QC

1981

Shor's algorithm

Feynman's talk on QC

1981

Shor's algorithm

Feynman's talk on QC

1981

Quantum Error Correction

Shor's algorithm

1994

Creation of Quantronics

1985

Feynman's talk on QC

1981

Quantum Error Correction

Shor's algorithm

1994

Creation of Quantronics

1985

Feynman's talk on QC

1981

Quantum Error Correction

1995-1997

Cooper Pair Box

Shor's algorithm

1994

Creation of Quantronics

1985

Feynman's talk on QC

1981

Quantum Error Correction

1995-1997

Cooper Pair Box

Transmon

1999

From transistors to transmons

Error per operation $\sim 10^{-20} - 10^{-22}$

From transistors to transmons

Transistor

Transmon

Error per operation $\sim 10^{-20} - 10^{-22}$

Error per operation $\sim 10^{-2} - 10^{-4}$

High controllability <

High controllability <

High controllability

High controllability

High controllability

High controllability

Inevitable coupling to bath

Error discretisation theorem Correcting Pauli errors = correcting arbitrary errors

Error discretisation theorem Correcting Pauli errors = correcting arbitrary errors

Error discretisation theorem Correcting Pauli errors = correcting arbitrary errors

Discrete qubit codes

Error discretisation theorem Correcting Pauli errors = correcting arbitrary errors

Discrete qubit codes

Error discretisation theorem Correcting Pauli errors = correcting arbitrary errors

Discrete qubit codes

Error discretisation theorem Correcting Pauli errors = correcting arbitrary errors

Discrete qubit codes

with
$$\hat{a} = \hat{x} + i\hat{p}$$

How can we encode a

How can we encode a **quantum** harmonic oscillator?

with
$$\hat{a}=\hat{x}+i\hat{p}$$

How can we encode a

with
$$\hat{a}=\hat{x}+i\hat{p}$$

with
$$\hat{a}=\hat{x}+i\hat{p}$$

How can we encode a **quantum** harmonic oscillator?

where
$$\hat{a}|\pm\alpha
angle=\pm|\pm\alpha
angle$$
 with $\hat{a}=\hat{x}+i\hat{p}$

Cat qubits

Mirrahimi et al., NJP (2014); Guillaud et al., PRX (2019); Lescanne et al., Nat. Phy. (2019)

Cat qubits

Cat qubits

Cat qubits

Cat qubits

Cat qubits are **exponentially** biased against <u>bit-flip</u> errors

α

Cat qubits

Cat qubits are **exponentially** biased against <u>bit-flip</u> errors

α

Cat qubits

Cat qubits are **exponentially** biased against <u>bit-flip</u> errors

Inner: cat qubits (bit-flips) Outer: repetition code (phase-flips)

α

Dissipative stabilization

$$\kappa_2 \mathcal{D}[a^2 - \alpha^2]$$

Two-photon dissipation \mathbf{O} + two-photon driving

Puri et al., npj QI (2017); Mirrahimi et al., NJP (2014); Guillaud et al., PRX (2019); Lescanne et al., Nat.Phy (2019)

pative cat qubits

Dissi

pative cat qubits

Dissi

pative cat qubits

Dissi

Guillaud et al. (2019)

Guillaud et al., PRX (2019); Xu et al., PRR (2012)

- Preparation (X)
- Measurement (X)
- Bias-preserving gates

<u>Guillaud et al. (2019)</u>

Guillaud et al., PRX (2019); Xu et al., PRR (2012)

- Preparation (X)
- Measurement (X)
- Bias-preserving gates

<u>Guillaud et al. (2019)</u>

Guillaud et al., PRX (2019); Xu et al., PRR (2012)

- Preparation (X)
- Measurement (X)
- Bias-preserving gates

Guillaud et al. (2019)

Guillaud et al., PRX (2019); Xu et al., PRR (2012)

- Preparation (X)
- Measurement (X)
- Bias-preserving gates

 $H = \varepsilon_{CX} (a_C^{\dagger} + a_C - 2\alpha) \otimes (a_T^{\dagger} a_T - |\alpha|^2)$

Guillaud et al. (2019)

Guillaud et al., PRX (2019); Xu et al., PRR (2012)

- Preparation (X)
- Measurement (X)
- Bias-preserving gates

CNOT

$$H = \varepsilon_{CX} (a_{C,1}^{\dagger} + a_{C,1} - 2\alpha) \otimes (a_{C,2}^{\dagger} + a_{C,2} - 2\alpha) \otimes (a_{T}^{\dagger} a_{T} - |\alpha|^{2})$$

Guillaud et al. (2019)

- Preparation (X)
- Measurement (X)
- \mathbf{O} Bias-preserving gates

 $\rightarrow 1 - F \propto \exp(-\gamma T_{\text{gate}})$

(adiabatic theorem) (Zeno effect)

Summary of PhD contributions

Work on cat qubits

- \mathbf{O} **RG**, A. Sarlette, M. Mirrahimi, Combined dissipative and Hamiltonian confinement of cat qubits, PRX Quantum (2021)
- \bigcirc **RG**, M. Mirrahimi, A. Sarlette, *Designing high-fidelity Zeno gates for dissipative cat qubits*, PRX Quantum (2022)
- U. Réglade, A. Bocquet, **RG**, et al., Quantum control of a cat-qubit with bit-flip times exceeding ten seconds, arXiv (2023)

Work on optimal control of open quantum systems

- **RG**, É. Genois, A. Blais, *Optimal readout and reset of a transmon*, in preparation

D. Ruiz, RG, J. Guillaud, M. Mirrahimi, Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies, Phys. Rev. A (2022)

P. Guilmin, RG, A. Bocquet, É. Genois, dynamigs: an open-source library for GPU-accelerated and differentiable quantum simulation, in preparation

Summary of PhD contributions

Work on cat qubits

D. Ruiz, RG, J. Guillaud, M. Mirrahimi, Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies, Phys. Rev. A (2022)

RG, M. Mirrahimi, A. Sarlette, *Designing high-fidelity Zeno gates for dissipative cat qubits*, PRX Quantum (2022) \bigcirc

U. Réglade, A. Bocquet, **RG**, et al., Quantum control of a cat-qubit with bit-flip times exceeding ten seconds, arXiv (2023)

Work on optimal control of open quantum systems

- RG, É. Genois, A. Blais, Optimal readout and reset of a transmon, in preparation
- \bigcirc

P. Guilmin, RG, A. Bocquet, É. Genois, dynamigs: an open-source library for GPU-accelerated and differentiable quantum simulation, in preparation

Summary of PhD contributions

Work on cat qubits

- \bigcirc **RG**, M. Mirrahimi, A. Sarlette, *Designing high-fidelity Zeno gates for dissipative cat qubits*, PRX Quantum (2022)
- U. Réglade, A. Bocquet, **RG**, et al., Quantum control of a cat-qubit with bit-flip times exceeding ten seconds, arXiv (2023) \bigcirc

Work on optimal control of open quantum systems

- RG, É. Genois, A. Blais, Optimal readout and reset of a transmon, in preparation

D. Ruiz, RG, J. Guillaud, M. Mirrahimi, Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies, Phys. Rev. A (2022)

P. Guilmin, RG, A. Bocquet, É. Genois, dynamigs: an open-source library for GPU-accelerated and differentiable quantum simulation, in preparation

Bit-flip lifetime of cat qubits

11

Bit-flip lifetime of cat qubits

 $H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$

12

 $H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$

12

 $H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$

12

 $H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$

12

 $H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$

12

 $H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$

12

 $H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$

Standard Tunneling Model

phase basis $\begin{pmatrix} e_n + \delta_n/2 & 0\\ 0 & e_n - \delta_n/2 \end{pmatrix}$

12

 $H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$

Standard Tunneling Model

<u>bit basis</u> phase basis $\begin{pmatrix} e_n & \delta_n/2 \\ \delta_n/2 & e_n \end{pmatrix} \leftarrow \begin{pmatrix} e_n + \delta_n/2 & 0 \\ 0 & e_n - \delta_n/2 \end{pmatrix}$

12

$$H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$$

bit basis phase basis
$$\begin{pmatrix} e_n & \delta_n/2 \\ \delta_n/2 & e_n \end{pmatrix} \leftarrow \begin{pmatrix} e_n + \delta_n/2 & 0 \\ 0 & e_n - \delta_n/2 \end{pmatrix}$$
Tunneling matrix element

12
The spectrum of Kerr cat qubits

$$H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$$

Standard Tunneling Model

phase basis <u>bit basis</u> $\begin{pmatrix} e_n & \delta_n/2 \\ \delta_n/2 & e_n \end{pmatrix} \leftarrow \begin{pmatrix} e_n + \delta_n/2 & 0 \\ 0 & e_n - \delta_n/2 \end{pmatrix}$

Incoherent leakage

- → Thermal photons
- ➔ Pure dephasing

12

The spectrum of Kerr cat qubits

$$H = -K(a^{\dagger 2} - \alpha^{*2})(a^2 - \alpha^2)$$

Standard Tunneling Model

- Incoherent <u>leakage</u>
- → Thermal photons
- → Pure dephasing

Bit-flip induced by incoherent leakage

12

13

13

13

13

13

13

13

13

<u>Gautier et al. (2021)</u>

14

<u>Gautier et al. (2021)</u>

14

How to retrieve an exponentially biased Kerr cat qubit?

14

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

7

15

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

lacebox Competition between K and κ_2

15

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

 \bullet Competition between K and κ_2

 $igodoldsymbol{Fit}$ Fit to $T_X \propto \exp(\gamma |lpha|^2)$

15

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

 \bullet Competition between K and κ_2

 \bullet Fit to $T_X \propto \exp(\gamma |\alpha|^2)$

15

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

 \bullet Competition between K and κ_2

Solution Fit to $T_X \propto \exp(\gamma |\alpha|^2)$

15

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

 \triangleright Competition between K and κ_2

Solution Fit to $T_X \propto \exp(\gamma |\alpha|^2)$

The two-photon exchange Hamiltonian

$$\frac{d\rho}{dt} = -i[H_{\text{TPE}}, \rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

with $H_{\text{TPE}} = g_2(a^2 - \alpha^2)\sigma_+ + g_2^*(a^{\dagger 2} - \alpha^{*2})\sigma_+$

Jaynes-Cummings-like interaction between a two-photon memory and a qubit

15

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

 \triangleright Competition between K and κ_2

Solution Fit to $T_X \propto \exp(\gamma |\alpha|^2)$

The two-photon exchange Hamiltonian

$$\frac{d\rho}{dt} = -i[H_{\text{TPE}}, \rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

with $H_{\text{TPE}} = g_2(a^2 - \alpha^2)\sigma_+ + g_2^*(a^{\dagger 2} - \alpha^{*2})\sigma_+$

Jaynes-Cummings-like interaction between a two-photon memory and a qubit

> Eigenenergies
$$E_n/g_2 = \pm \sqrt{e_n/K}$$

15

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

 \triangleright Competition between K and κ_2

 \bullet Fit to $T_X \propto \exp(\gamma |\alpha|^2)$

The two-photon exchange Hamiltonian

$$\frac{d\rho}{dt} = -i[H_{\text{TPE}}, \rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

with $H_{\text{TPE}} = g_2(a^2 - \alpha^2)\sigma_+ + g_2^*(a^{\dagger 2} - \alpha^{*2})\sigma_+$

Jaynes-Cummings-like interaction between a two-photon memory and a qubit

> Eigenenergies
$$E_n/g_2 = \pm \sqrt{e_n/K}$$

15

Combining with two-photon dissipation

$$\frac{d\rho}{dt} = -i[H_{\text{Kerr}},\rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

 \triangleright Competition between K and κ_2

Solution Fit to $T_X \propto \exp(\gamma |\alpha|^2)$

The two-photon exchange Hamiltonian

$$\frac{d\rho}{dt} = -i[H_{\text{TPE}}, \rho] + \kappa_2 \mathcal{D}[a^2 - \alpha^2]\rho$$

with $H_{\text{TPE}} = g_2(a^2 - \alpha^2)\sigma_+ + g_2^*(a^{\dagger 2} - \alpha^{*2})\sigma_+$

Jaynes-Cummings-like interaction between a two-photon memory and a qubit

> Eigenenergies
$$E_n/g_2 = \pm \sqrt{e_n/K}$$

Easier to engineer together with two-photon dissipation

15

Combined Hamiltonian and dissipative confinement

Competition between "heating" by leakage, and "cooling" by two-photon dissipation

15b

Combined Hamiltonian and dissipative confinement

Competition between "heating" by leakage, and "cooling" by two-photon dissipation

15b

Kerr cat qubits

Lifetime $\rightarrow |\alpha|^2$

- 1. Limited by leakage
- 2. Weak exponential scaling

[Putterman et al., 2021] [Gautier et al., 2021] [Frattini et al., 2022]

16

Kerr cat qubits

Lifetime $\rightarrow |\alpha|^2$

- 1. Limited by leakage
- 2. Weak exponential scaling

[*Putterman et al., 2021*] [*Gautier et al., 2021*] [*Frattini et al., 2022*] **Dissipative cat qubits**

Exponential scaling

[*Mirrahimi et al., 2014*] [*Lescanne et al., 2019*]

16

Kerr cat qubits

Lifetime $\rightarrow |\alpha|^2$

- 1. Limited by leakage
- 2. Weak exponential scaling

[Putterman et al., 2021] [Gautier et al., 2021] [Frattini et al., 2022]

Adiabatic theorem
Image: Second se

[Puri et al., 2019] [Xu et al., 2022]

Dissipative cat qubits

Exponential scaling

[*Mirrahimi et al., 2014*] [*Lescanne et al., 2019*]

16

Kerr cat qubits

Lifetime $\rightarrow |\alpha|^2$

- 1. Limited by leakage
- 2. Weak exponential scaling

[*Putterman et al., 2021*] [*Gautier et al., 2021*] [*Frattini et al., 2022*]

Adiabatic theorem
Image: Second se

[Puri et al., 2019] [Xu et al., 2022]

Dissipative cat qubits

Exponential scaling

[*Mirrahimi et al., 2014*] [*Lescanne et al., 2019*]

Linear scaling

[*Mirrahimi et al., 2014*] [*Guillaud et al., 2019*] [*Gautier et al., 2022*]

16

Summary of PhD contributions

Work on cat qubits

- \bigcirc **RG**, A. Sarlette, M. Mirrahimi, Combined dissipative and Hamiltonian confinement of cat qubits, PRX Quantum (2021)
- \bigcirc **RG**, M. Mirrahimi, A. Sarlette, *Designing high-fidelity Zeno gates for dissipative cat qubits*, PRX Quantum (2022)
- U. Réglade, A. Bocquet, **RG**, et al., Quantum control of a cat-qubit with bit-flip times exceeding ten seconds, arXiv (2023) \bigcirc

Work on optimal control of open quantum systems

- **RG**, É. Genois, A. Blais, *Optimal readout and reset of a transmon*, in preparation

D. Ruiz, RG, J. Guillaud, M. Mirrahimi, Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies, Phys. Rev. A (2022)

P. Guilmin, RG, A. Bocquet, É. Genois, dynamigs: an open-source library for GPU-accelerated and differentiable quantum simulation, in preparation

Reservoir engineering of two-photon dissipation

Memory

Mirrahimi et al. NJP (2014), Lescanne et al. Nat. Phy. (2019)

17

Reservoir engineering of two-photon dissipation

Memory

Mirrahimi et al. NJP (2014), Lescanne et al. Nat. Phy. (2019)

Memory + Buffer

$$\frac{d\rho}{dt} = -i[g_2(a^2 - \alpha^2)b^{\dagger} + \text{h.c.}, \rho] + \kappa_b \mathcal{D}[b]\rho$$

17

Reservoir engineering of two-photon dissipation

Memory

Buffer mode provides inertia -> Gate engineering

Mirrahimi et al. NJP (2014), Lescanne et al. Nat. Phy. (2019)

$$\frac{d\rho}{dt} = -i[g_2(a^2 - \alpha^2)b^{\dagger} + \text{h.c.}, \rho] + \kappa_b \mathcal{D}[b]\rho$$

17

<u>Guillaud et al. (2019)</u>

Guillaud et al., PRX (2019); Chamberland et al., PRX Q (2021)

Toffoli

 $H = \varepsilon_{CX} (a_C^{\dagger} + a_C - 2\alpha) \otimes \qquad H = \varepsilon_{CX} (a_{C,1}^{\dagger} + a_{C,1} - 2\alpha) \otimes$ $(a_T^{\dagger} a_T - |\alpha|^2) \qquad \qquad H = \varepsilon_{CX} (a_{C,1}^{\dagger} + a_{C,1} - 2\alpha) \otimes$ $(a_{C,2}^{\dagger} + a_{C,2} - 2\alpha) \otimes$ $(a_T^{\dagger}a_T - |\alpha|^2)$

<u>Guillaud et al. (2019)</u>

Guillaud et al., PRX (2019); Chamberland et al., PRX Q (2021)

<u>Guillaud et al. (2019)</u>

Gate errors Cavity lifetime

Guillaud et al., PRX (2019); Chamberland et al., PRX Q (2021)

<u>Guillaud et al. (2019)</u>

Gate errors Cavity lifetime

Guillaud et al., PRX (2019); Chamberland et al., PRX Q (2021)

Gate-induced errors are only on **control** qubits

Hamiltonian of Z rotation gate

$$\hat{H} = g_2(\hat{a}^2 - \alpha^2)\hat{b}^{\dagger} + \varepsilon_Z\hat{a} + \text{h.c.}$$

Gautier et al., PRXQ (2023)

Hamiltonian of Z rotation gate

$$\hat{H} = g_2(\hat{a}^2 - \alpha^2)\hat{b}^{\dagger} + \varepsilon_Z\hat{a} + \text{h.c.}$$

Move in Shifted Fock Basis

 $\hat{H} = g_2(\hat{\tilde{a}}^2 + 2\alpha\hat{\tilde{a}})\hat{b}^{\dagger} + \varepsilon_Z\hat{\sigma}_z\hat{a} + \varepsilon_Z\alpha\hat{\sigma}_z + \text{h.c.}$

Hamiltonian of Z rotation gate

$$\hat{H} = g_2(\hat{a}^2 - \alpha^2)\hat{b}^{\dagger} + \varepsilon_Z\hat{a} + \text{h.c.}$$

Move in Shifted Fock Basis

$$\hat{H} = g_2 (\hat{\tilde{a}}^2 + 2\alpha \hat{\tilde{a}}) \hat{b}^{\dagger} + \varepsilon_Z \hat{\sigma}_z \hat{a} + \varepsilon_Z \alpha \hat{\sigma}_z + h$$

n.c.

Hamiltonian of Z rotation gate

$$\hat{H} = g_2(\hat{a}^2 - \alpha^2)\hat{b}^{\dagger} + \varepsilon_Z\hat{a} + \text{h.c.}$$

Move in Shifted Fock Basis

$$\hat{H} = g_2 (\hat{\tilde{a}}^2 + 2\alpha \hat{\tilde{a}}) \hat{b}^{\dagger} + \varepsilon_Z \hat{\sigma}_z \hat{a} + \varepsilon_Z \alpha \hat{\sigma}_z + h$$

Mean-field description of buffer dynamics

$$\mathbf{\mathfrak{S}} \quad \ddot{b} + \frac{1}{2}\kappa_b \dot{b} + \nu^2 b = -\nu\varepsilon_Z \sigma_z$$

1.C.

Hamiltonian of Z rotation gate

$$\widehat{H} = g_2(\widehat{a}^2 - \alpha^2)\widehat{b}^{\dagger} + \varepsilon_Z\widehat{a} + \text{h.c.}$$

Move in Shifted Fock Basis

$$\hat{H} = g_2 (\hat{\tilde{a}}^2 + 2\alpha \hat{\tilde{a}}) \hat{b}^{\dagger} + \varepsilon_Z \hat{\sigma}_z \hat{a} + \varepsilon_Z \alpha \hat{\sigma}_z + h$$

Mean-field description of buffer dynamics

$$\mathbf{\mathfrak{b}} \quad \ddot{b} + \frac{1}{2}\kappa_b \dot{b} + \nu^2 b = -\nu\varepsilon_Z \sigma_z$$

Infinite-time dynamics

$$b \xrightarrow{t \to \infty} -\frac{\varepsilon_Z}{\nu} \sigma_z$$

Gautier et al., PRXQ (2023); Chamberland et al., PRX Q (2021)

1.C.

Hamiltonian of Z rotation gate

$$\widehat{H} = g_2(\widehat{a}^2 - \alpha^2)\widehat{b}^{\dagger} + \varepsilon_Z\widehat{a} + \text{h.c.}$$

Move in Shifted Fock Basis

$$\hat{H} = g_2 (\hat{\tilde{a}}^2 + 2\alpha \hat{\tilde{a}}) \hat{b}^{\dagger} + \varepsilon_Z \hat{\sigma}_z \hat{a} + \varepsilon_Z \alpha \hat{\sigma}_z + h$$

<u>Mean-field description of buffer dynamics</u>

$$\mathbf{\mathfrak{b}} \quad \ddot{b} + \frac{1}{2}\kappa_b \dot{b} + \nu^2 b = -\nu\varepsilon_Z \sigma_z$$

Infinite-time dynamics

$$b \xrightarrow{t \to \infty} -\frac{\varepsilon_Z}{\nu} \sigma_z$$

Gautier et al., PRXQ (2023); Chamberland et al., PRX Q (2021)

Hamiltonian of Z rotation gate

$$\widehat{H} = g_2(\widehat{a}^2 - \alpha^2)\widehat{b}^{\dagger} + \varepsilon_Z\widehat{a} + \text{h.c.}$$

Move in Shifted Fock Basis

$$\hat{H} = g_2 (\hat{\tilde{a}}^2 + 2\alpha \hat{\tilde{a}}) \hat{b}^{\dagger} + \varepsilon_Z \hat{\sigma}_z \hat{a} + \varepsilon_Z \alpha \hat{\sigma}_z + h$$

<u>Mean-field description of buffer dynamics</u>

$$\mathbf{\mathfrak{S}} \quad \ddot{b} + \frac{1}{2}\kappa_b \dot{b} + \nu^2 b = -\nu\varepsilon_Z \sigma_z$$

Infinite-time dynamics

$$b \xrightarrow{t \to \infty} -\frac{\varepsilon_Z}{\nu} \sigma_z$$

Solution $p_Z = \frac{\pi^2}{16|\alpha|^4T} \frac{\kappa_b}{4g_2^2}$

Gautier et al., PRXQ (2023); Chamberland et al., PRX Q (2021)

From discovery to answers

From discovery to answers

From discovery to answers

Information is lost through the buffer mode measure the buffer output to retrieve it

$$\frac{d\rho}{dt} = -i[H,\rho]dt + \kappa_b \left(\mathcal{D}_{\eta}[b]\rho \, dt + \mathcal{J}[\rho]dN_{\eta}\right)$$

no-jump jump

with $0 \leq \eta \leq 1$ (detection efficiency)

Information is lost through the buffer mode measure the buffer output to retrieve it

$$\frac{d\rho}{dt} = -i[H,\rho]dt + \kappa_b \left(\mathcal{D}_{\eta}[b]\rho \, dt + \mathcal{J}[\rho]dN_{\eta}\right)$$

no-jump jump

with $0 \leq \eta \leq 1$ (detection efficiency)

Information is lost through the buffer mode measure the buffer output to retrieve it

$$\frac{d\rho}{dt} = -i[H,\rho]dt + \kappa_b \left(\mathcal{D}_{\eta}[b]\rho \, dt + \mathcal{J}[\rho]dN_{\eta}\right)$$

no-jump jump

with $0 \leq \eta \leq 1$ (detection efficiency)

Assuming $\eta=1$

Preserves purity (no information lost)

Information is lost through the buffer mode measure the buffer output to retrieve it

with $0 \leq \eta \leq 1$ (detection efficiency)

Assuming $\eta=1$

Ø

Preserves purity (no information lost)

Jump detected = parity swap

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

$$\frac{d\rho}{dt} = -i[H,\rho]dt + \kappa_b \left(\mathcal{D}_{\eta}[b]\rho \, dt + \mathcal{J}[\rho]dN_{\eta}\right)$$

no-jump

jump

21

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

21

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

Zeno scaling in 1/T

21

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

Zeno scaling in 1/T

21

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

Zeno scaling in 1/T

21

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

Zeno scaling in 1/T

21

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

Can apply feedback once per QEC cycle

Zeno scaling in 1/T

21

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

- Can apply feedback once per QEC cycle
- Solution of the second section of the second section of the second section of the second seco

Zeno scaling in 1/T

21

Information is lost through the buffer mode

measure the buffer output to retrieve it + markovian feedback

- Can apply feedback once per QEC cycle
- Solution of the section of the secti

Zeno scaling in 1/T

21

Orrelate buffer photon losses with parity-swaps on memory

$$\frac{d\rho}{dt} = -i[H_{AB} + H_Z, \rho] + \frac{\kappa_{ab}\mathcal{D}[ab]\rho}{\kappa_{ab}\mathcal{D}[ab]\rho}$$

22

Correlate buffer photon losses with parity-swaps on memory

$$\frac{d\rho}{dt} = -i[H_{AB} + H_Z, \rho] + \frac{\kappa_{ab}\mathcal{D}[ab]\rho}{\kappa_{ab}\mathcal{D}[ab]\rho}$$

22

Correlate buffer photon losses with parity-swaps on memory \mathbf{O}

$$\frac{d\rho}{dt} = -i[H_{AB} + H_Z, \rho] + \frac{\kappa_{ab}\mathcal{D}[ab]\rho}{\kappa_{ab}\mathcal{D}[ab]\rho}$$

x50 gate fidelity improvement (limited by second-order effects), independent of $|lpha|^2$ \mathbf{O}

22

Correlate buffer photon losses with parity-swaps on memory \mathbf{O}

$$\frac{d\rho}{dt} = -i[H_{AB} + H_Z, \rho] + \frac{\kappa_{ab}\mathcal{D}[ab]\rho}{\kappa_{ab}\mathcal{D}[ab]\rho}$$

x50 gate fidelity improvement (limited by second-order effects), independent of $|lpha|^2$ \mathbf{O} Seneralizable to any CⁿX gate with no additional experimental overhead

22

Correlate buffer photon losses with parity-swaps on memory \mathbf{O}

$$\frac{d\rho}{dt} = -i[H_{AB} + H_Z, \rho] + \frac{\kappa_{ab}\mathcal{D}[ab]\rho}{\kappa_{ab}\mathcal{D}[ab]\rho}$$

x50 gate fidelity improvement (limited by second-order effects), independent of $|lpha|^2$ \mathbf{O} Solutional experimental overhead Autonomous correction of **cavity losses** with squeezed cats \mathbf{O}

22

Correlate buffer photon losses with parity-swaps on memory \mathbf{O}

$$\frac{d\rho}{dt} = -i[H_{AB} + H_Z, \rho] + \frac{\kappa_{ab}\mathcal{D}[ab]\rho}{\kappa_{ab}\mathcal{D}[ab]\rho}$$

22

Summary of gate designs

Gautier et al. (2022)

		Hamiltonian \boldsymbol{H}	Dissipator \mathcal{D}	Gate Errors
Ref. [30, 37]	Standard Zeno	$oldsymbol{H}_{AB}+oldsymbol{H}_Z$	$\kappa_b \mathcal{D}[oldsymbol{b}]$	$p_Z^{(0)} \equiv \frac{\pi^2}{16 \alpha ^4 T} \frac{\kappa_b}{4g_2^2}$
Ref. [50]	Combined dissipation and TPE Hamiltonian	$oldsymbol{H}_{AB} + oldsymbol{H}_{Z} + oldsymbol{H}_{TPE} ext{ with } \ oldsymbol{H}_{TPE} \equiv g_2'(oldsymbol{a}^2 - lpha^2)oldsymbol{\sigma}_+ + ext{h.c.}$	$\kappa_b \mathcal{D}[oldsymbol{b}]$	$p_Z = rac{1}{1 + \left(2g_2'/\kappa_2\right)^2} p_Z^{(0)}$
Sec. V	Buffer photodetection with classical feedback	$oldsymbol{H}_{AB}+oldsymbol{H}_Z$	$\kappa_b \mathcal{D}[m{b}] \ (ext{photodetected})$	$p_Z \gtrsim (1-\eta) p_Z^{(0)} \ (ext{detection efficiency } \eta)$
Sec. VI	Cat-buffer autonomous feedback	$oldsymbol{H}_{AB}+oldsymbol{H}_Z$	$\kappa_{ab} \mathcal{D}[oldsymbol{ab}]$	$p_Z = \mu p_Z^{(0)} \ ext{with} \ \mu \gtrsim 0.02$
Sec. VII	Locally flat Hamiltonian	$egin{aligned} m{H}_{AB} + m{H}_{Z,N} ext{ with } \ m{H}_{Z,N} &= arepsilon_Z \sum_{n=0}^N c_n (m{a} + m{a}^\dagger)^{2n+1} \end{aligned}$	$\kappa_b \mathcal{D}[oldsymbol{b}]$	$p_Z = u lpha ^{-2N} p_Z^{(0)}$ with $ u \sim 1$
Sec. VIII	Discrete jump	$oldsymbol{H}_{AB}$	$\kappa_b \mathcal{D}[oldsymbol{b}] + \kappa_Z \mathcal{D}[oldsymbol{a}_ heta oldsymbol{\sigma}_+]$	$p_Z = \exp(-\kappa_Z lpha ^2 T)$

High-Fidelity Control and stabilization of Cat Qubits

Work on cat qubits

D. Ruiz, RG, J. Guillaud, M. Mirrahimi, Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies, Phys. Rev. A (2022) \bigcirc

RG, M. Mirrahimi, A. Sarlette, *Designing high-fidelity Zeno gates for dissipative cat qubits*, PRX Quantum (2022) \bigcirc

U. Réglade, A. Bocquet, **RG**, et al., Quantum control of a cat-qubit with bit-flip times exceeding ten seconds, arXiv (2023)

Work on optimal control of open quantum systems

RG, É. Genois, A. Blais, *Optimal readout and reset of a transmon*, in preparation

P. Guilmin, RG, A. Bocquet, É. Genois, dynamigs: an open-source library for GPU-accelerated and differentiable quantum simulation, in preparation

High-Fidelity Control and stabilization of Cat Qubits

Thank you to all colleagues @ Inria, ENS, Alice & Bob, and Institut Quantique

High-Fidelity Control and stabilization of Cat Qubits

Work on cat qubits

D. Ruiz, RG, J. Guillaud, M. Mirrahimi, Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies, Phys. Rev. A (2022) \bigcirc

RG, M. Mirrahimi, A. Sarlette, *Designing high-fidelity Zeno gates for dissipative cat qubits*, PRX Quantum (2022) \bigcirc

U. Réglade, A. Bocquet, **RG**, et al., Quantum control of a cat-qubit with bit-flip times exceeding ten seconds, arXiv (2023)

Work on optimal control of open quantum systems

RG, É. Genois, A. Blais, *Optimal readout and reset of a transmon*, in preparation

P. Guilmin, RG, A. Bocquet, É. Genois, dynamigs: an open-source library for GPU-accelerated and differentiable quantum simulation, in preparation

Supplementary slides
Quantum Optimal Control

QOC Finding an optimal set of parameters for a given operation

Gradient-free

- DRAG
- Chopped Random Basis (CRAB)
- Nelder-Mead
- STIRAP
- Reinforcement Learning

Gradient-based

- Krotov
- GRAPE
- Automatic Differentiation
- Adjoint state

Any closed or open system, any cost function, low memory overhead, fast

Optimal Control with Automatic Differentiation

Objective Minimize a cost function $C = C(\theta, \hat{\rho}(t_0), ..., \hat{\rho}(t_n))$

$$\frac{d\hat{\rho}}{dt} = \mathcal{L}\hat{\rho} \equiv -i[\hat{H},\hat{\rho}] + \sum_{k} \mathcal{D}[\hat{L}_{k}]\hat{\rho}$$

$$\frac{dC}{d\theta_i} = \frac{\partial C}{\partial \theta_i} + \sum_k \frac{\partial C}{\partial \hat{\rho}(t_k)} \frac{d\hat{\rho}(t_k)}{d\theta_i}$$

- Store graph of operations
- Backward through graph using chain rule

Adjoint State Quantum Optimal Control

Objective Minimize a cost function $C = C(\theta, \hat{\rho}(t_0), ..., \hat{\rho}(t_n))$

Master Equation

$$\frac{d\hat{\rho}}{dt} = \mathcal{L}\hat{\rho} \equiv -i[\hat{H},\hat{\rho}] + \sum_{k} \mathcal{D}[\hat{L}_{k}]\hat{\rho}$$

Adjoint state $\hat{\phi}(t) = dC/d\hat{\rho}(t)$

$$\frac{d\hat{\phi}}{dt} = -\mathcal{L}^{\dagger}\hat{\phi} \equiv -i[\hat{H},\hat{\phi}] - \sum_{k} \mathcal{D}^{\dagger}[\hat{L}_{k}]\hat{\phi}$$

Pontryagin (1961), Chen et al., NeurIPS (2018)

Adjoint State Quantum Optimal Control

Adjoint State Quantum Optimal Control

Objective Minimize a cost function $C = C(\theta, \hat{\rho}(t_0), ..., \hat{\rho}(t_n))$

- Adam
- Stochastic Gradient Descent
- L-FBGS

- Memory cost $\mathcal{O}(N_{cp} \times N^2)$
- Time cost $O(4T_{\rm ME})$
- Can trade memory for numerical stability

Transmon-resonator-filter model

Readout **f0g1 reset** Drive transmon f0-g1 and e-f transitions $\Omega_{f0g1}(t)\hat{n}_t + \Omega_{ef}(t)\hat{n}_t$

Optimizing readout

Objective Maximize SNR in shortest time

Cost function $SNR = \sqrt{2\kappa\eta} \int_{0}^{T} |\beta_{e} - \beta_{g}|^{2} dt$ (from Bultink et al., APL 2018)

Parameters

- Pulses (1ns bins, continuous filter)
- Drive frequencies

- Resonator population < $\bar{n}_{\rm crit}$
- Forbidden resonator states
- Maximum pulse amplitudes

Optimizing readout - Preliminary results

Signal-to-Noise Ratio

$$\mathrm{SNR} = \sqrt{2\kappa\eta} \int_0^T |\beta_e - \beta_g|^2 dt$$

Assignment error

$$\varepsilon_a = \frac{1}{2} \left(P(e|g) + P(g|e) \right)$$
$$\sim \frac{1}{2} \left(1 - \operatorname{erf}(\operatorname{SNR}/2) + \tau/7 \right)$$

~55ns to ~30ns !

Optimizing readout - Flat readout

Optimizing readout - Preliminary results

Optimizing readout - Preliminary results

Signal-to-Noise Ratio

$$\mathrm{SNR} = \sqrt{2\kappa\eta} \int_0^T |\beta_e - \beta_g|^2 dt$$

Assignment error

$$\varepsilon_a = \frac{1}{2} \left(P(e|g) + P(g|e) \right)$$
$$\sim \frac{1}{2} \left(1 - \operatorname{erf}(\operatorname{SNR}/2) + \tau/7 \right)$$

~55ns to ~30ns !

A library for efficient differentiable solvers

Differentiable solvers with PyTorch

- Solve SE, ME and SME
- Gradients with automatic or adjoint differentiation

Features

- GPU & CPU support
- Supports batching for density matrices & Hamiltonians
- Useful for optimal control, parameter estimation, state tomography...
- Many solvers (Dormand-Prince 5, Rouchon 1&2, Explicit exponentiation,...)

Co-developed with Pierre Guilmin, Adrien Bocquet & Élie Genois

The dynamiqs library

(1) Works as a drop-in replacement to QuTiP

```
1 import qutip as qt
 2 import dynamiqs as dq
 3
 4 # parameters
 5 N = 32
 6 delta = 4.0
 7 kappa = 0.1
 8 alpha = 2.0j
 9
10 # operators
11 a = qt.destroy(N)
12 H = delta \star a.dag() \star a
13 L = sqrt(kappa) \star a
14
15 # mesolve arguments
16 rho0 = qt.coherent_dm(N, alpha)
   tsave = np.linspace(0.0, 1.0, 11)
17
18
19 # solve ME
20 rhos, _ = dq.mesolve(H, L, rho0, tsave)
```

(2) Compute gradients in a few lines

```
1 import torch
   import dynamigs as dq
 3
 4 # parameters
   N = 32
 5
 6 delta = torch.tensor(4.0, requires_grad=True)
   kappa = torch.tensor(0.1)
   alpha = torch.tensor(2.0j, requires_grad=True)
 8
 9
  # operators
10
11 a, adag = dq.destroy(N), dq.create(N)
12 H = delta * adag 🗋 a
13 L = sqrt(kappa) \star a
14
15 # mesolve arguments
16 rho0 = dq.coherent_dm(N, alpha)
   tsave = torch.linspace(0.0, 1.0, 11)
17
18
19 # solve ME
20 rhos, _ = dq.mesolve(H, L, rho0, tsave)
21
   # compute gradient of some loss
22
   loss = dq.expect(adag @ a, rhos[-1])
23
   loss.backward()
24
```