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1 Petabyte (1015)

1 ps

10-25

1000 qubits

10 ns

10-3

Focus on problems with exponential speed-up
Still, errors are too frequent → need 10-8

The state of quantum computing

Storage

Gate speed

Gate errors
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A fundamental predicament

Signal @ room temp.

Cooled down to ~20mK

Frequency filtered

Readout signal

Amplified

Inevitable coupling to bath

High controllability Long lifetime
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Quantum error correction

Discrete qubit codes Bosonic codes

Google Quantum AI, Nature 2022

Bit-flip

Phase-flip

Quantum 

harmonic oscillator

Error discretization theorem
Correcting Pauli errors = 

Correcting arbitrary errors

P. Shor, PRA (1995); Gottesman, Kitaev, Preskill, PRA (2001)
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Practical discrete error correcting codes

Physical constraints: 2D local codes

n: number of physical qubits
k: number of logical qubits
d: code distance

with

Bravyi Poulin Theral (BPT) bound:
→ Surface code saturates the bound
→ Solutions: • 3D codes

• Long-range connections
• Classical codes

Google Quantum AI, Nature 2022

S. Bravyi et al., arXiv 2023

BPT bound for classical codes:

→ In practice, d ~ 10-30
• Quantum code: 100-900 physical/logical
• Classical code: 3-6 physical/logical

Bravyi, Poulin, Theral, PRL (2009); D. Ruiz et al., arXiv (2024)
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Can we afford a classical code?

Need biased-noise qubits: pX, pY ≪ pZ

• Small bias → erasure codes (dual-rail), biased quantum codes (XZZX)
• Large bias → classical codes (cat qubits)

Fermi’s golden rule:

•

•

Cat qubits: bosonic code with non-local encoding

Two well-known stabilisation schemes:

• Kerr cats → Better gates, limited by thermal noise
• Dissipative cats → More inertia, high bias

→ Combined cats (RG et al., PRXQ 2022)

Is bias enough to afford a classical code?
Mirrahimi et al., NJP (2014); Puri et al., npj QI (2017)
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A hardware-efficient repetition code

Google Quantum AI, Nature 2022 Réglade, Bocquet et al., arXiv 2024

Dissipative cat qubit = bit-flip repetition code 
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Guillaud & Mirrahimi, PRX 9, 041053 (2019)
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Error correction cycle

|±⟩ → |∓⟩

Logical states: +𝐿 = + + ⋯ + , −𝐿 = | − − ⋯ −⟩

Logical operators: 𝑍𝐿 =⊗𝑖 𝑍𝑖 and 𝑋𝐿 = 𝑋𝑖

Stabilizer: 𝑆𝑖 = 𝑋𝑖𝑋𝑖+1

Repetition code error correction cycle 

Need to correct phase-flip errors
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Bit-flip requirements

• Data bit-flips must be exponentially 
suppressed: data noise bias
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→ Logical error scales as 𝑝𝑍𝐿 ∝ Λ𝑑/2

…D

A

D

A

D

A

D

𝑑 data qubits 

Practical threshold definition:

→ Only requires 𝑝𝑍𝐴 + 𝑝𝑍𝐷 ≤ 0.30

Le Régent et al., Quantum 7, 1198 (2023)

Repetition code threshold

→ Λ = 1 when fitted for 𝑑 ≤ 19

→ Favours ancilla/data error assymetry

Repetition code is very forgiving
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Reservoir engineering of two-photon dissipation

Memory Memory + Buffer

Requires parametric four-wave mixing

Mirrahimi et al. NJP (2014), Lescanne et al. Nat. Phy. (2019)
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Parametric four-wave mixing

Josephson Junction SQUID Asymmetrically Threaded SQUID

Lescanne et al. Nat. Phy. (2019)
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Experimental setup

Readout

Transmon

Cat-Qubit

I I , Pump

Buffer Filters

Buffer port

Cat-Qubit portReadout

Buffer

Cat-Qubit

25 µm

150 µm

1 mm

Lescanne et al. Nat. Phy. (2019)
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Experimental setup

Lescanne et al. Nat. Phy. (2019)
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Saturation due to readout transmon
Confirmed in Berdou et al. PRX Quantum (2022)

Transmon-induced saturation

Lescanne et al. Nat. Phy. (2019)
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Problem: how do we readout?

Transmon-free experimental setup

Réglade, Bocquet et al. arXiv (2023)
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Readout protocol

with parity operator

Four-step process:

(1) Displace initial state

(3) Map parity to coherent states

(4) Readout coherent states

Wigner distribution

with displacement operator

Réglade, Bocquet et al. arXiv (2023); Royer PRA (1977)

(2) Map to cat states while 
preserving parity (two-ph. diss)
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Mapping parity to coherent states

Even parity Odd parity

Réglade, Bocquet et al. arXiv (2023); V. Albert et al. PRL (2016)
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Réglade, Bocquet et al. arXiv (2023); V. Albert et al. PRL (2016)

Readout protocol
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Exponentially biased qubits

Bit lifetime at > 10 seconds !

Réglade, Bocquet et al. arXiv (2023)
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Guillaud & Mirrahimi, PRX 9, 041053 (2019)

Bit-flip requirements

• Data bit-flips must be exponentially 
suppressed: data noise bias

• Ancilla bit-flips must also be exponentially 
suppressed: no error propagation

• Bit-flips must remain exponentially suppressed 
during CNOT: bias-preserving gates
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Longitudinal pump at 𝜔𝑝 = 𝜔𝑎
𝑐𝑡𝑟𝑙

Selects longitudinal coupling
𝐻𝑙 = 𝑔𝑙 𝑎𝑐 + 𝑎𝑐

+ + 2𝛼 ⨂𝑎𝑡
+𝑎𝑡

Two-photon pump 
at 𝜔𝑝 = 2𝜔𝑎

𝑐𝑡𝑟𝑙 − 𝜔𝑏
𝑐𝑡𝑟𝑙

Control Target

CNOT scheme
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Pump 𝑔2

Buffer

Tomo
Prepare
𝛼 + −𝛼  

⨂
𝛼 − | − 𝛼⟩

Play CNOT
without target 
stabilization

Measure
𝒲 𝛼

𝑡𝐶𝑁𝑂𝑇

Pump 𝑔2

Buffer

Tomo

Pump 𝑔𝑙

C
on

tr
ol

Ta
rg

et

Re
st

ab

Control Target

𝑔𝑙/2𝜋 = 220 kHz
𝑇𝐶𝑁𝑂𝑇 = 400 nsMemory

Memory

CNOT at play

𝑝𝑍𝐴
𝐶𝑁𝑂𝑇 ≈ 0.15 𝑝𝑍𝐷

𝐶𝑁𝑂𝑇 ≈ 0.15
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Solutions

• Further reduce Kerr and 
dephasing

• Engineer conditional rotation 
of the two-photon dissipation 
on the target

Characterizing bit-flips

Bit-flip scaling is limited by 
leakage while stabilization 
is turned off.

Guillaud & Mirrahimi, PRX 9, 041053 (2019)
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Bit-flip requirements
Data bit-flips must be exponentially 
suppressed: data noise bias
Ancilla bit-flips must also be exponentially 
suppressed: no error propagation
Bit-flips must remain exponentially suppressed 
during CNOT: bias-preserving gates
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Going below threshold

How far are we from the threshold?

>95% 85%

~30%

85%

85%

• Better readout scheme → WIP
• Improve bare cavity T1

• Improve k2

85%

To go below threshold:

T1 degradation under pump:

Parametric effect? Junction modes? Thermalization?...
→ WIP
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