

Quantum computing with dissipative cat qubits: a top-to-bottom overview

Ronan Gautier | Institut Quantique

March 13th 2024

Experimental progress 02 towards operating cat qubits

Going below threshold

01 Quantum error correction with biased noise qubits

02 Experimental progress towards operating cat qubits

03 Going below threshold

The state of quantum computing

1 Petabyte (1015)	Storage	1000 qubits
l ps	Gate speed	10 ns
10-25	Gate errors	10-3

Focus on problems with exponential speed-up Still, errors are too frequent \rightarrow need 10⁻⁸

A fundamental predicament

Inevitable coupling to bath

Quantum error correction

Error discretization theorem

Correcting Pauli errors = Correcting arbitrary errors

Discrete qubit codes

Google Quantum AI, Nature 2022

Bosonic codes

Practical discrete error correcting codes

 $\llbracket n,k,d \rrbracket$ with n: number of physical qubits k: number of logical qubits d: code distance

Physical constraints: 2D local codes

Bravyi Poulin Theral (BPT) bound: $kd^2 = \mathcal{O}(n)$

- ightarrow Surface code saturates the bound
- → Solutions: 3D codes
 - Long-range connections
 - Classical codes

<u>BPT bound for classical codes:</u> $k\sqrt{d} = \mathcal{O}(n)$

- → In practice, d ~ 10-30
 - *Quantum code*: 100-900 physical/logical
 - Classical code: 3-6 physical/logical

Google Quantum AI, Nature 2022

S. Bravyi et al., arXiv 2023

Can we afford a classical code?

...

<u>Need biased-noise qubits</u>: p_X , $p_Y \ll p_Z$

- Small bias → erasure codes (dual-rail), biased quantum codes (XZZX)
- Large bias → classical codes (cat qubits)

<u>Cat qubits:</u> bosonic code with non-local encoding

Fermi's golden rule:

• $\Gamma_Z \propto |\langle -\alpha | H | \alpha \rangle|^2 \propto \exp(-2|\alpha|^2)$ • $\Gamma_X \propto \kappa_1 |\alpha|^2$

Two well-known stabilisation schemes:

- Kerr cats \rightarrow Better gates, limited by thermal noise
- Dissipative cats → More inertia, high bias

→ Combined cats (**RG** et al., PRXQ 2022)

Is bias enough to afford a classical code?

Mirrahimi et al., NJP (2014); Puri et al., npj QI (2017)

A hardware-efficient repetition code

Dissipative cat qubit = bit-flip repetition code


```
Logical states: |+_L\rangle = |++\dots+\rangle, |-_L\rangle = |-\dots-\rangle
Logical operators: Z_L = \bigotimes_i Z_i and X_L = X_i
Stabilizer: S_i = X_i X_{i+1}
```


Need to correct phase-flip errors

Repetition code ingredients

• +/- state preparation

Need to correct phase-flip errors

Repetition code ingredients

- +/- state preparation
- CNOT gate

Need to correct phase-flip errors

- +/- state preparation
- CNOT gate
- Parity measurement

Repetition code ingredients

- +/- state preparation
- CNOT gate
- Parity measurement

Bit-flip requirements

 Data bit-flips must be exponentially suppressed: data noise bias

Logical states:
$$|+_L\rangle = |++\dots+\rangle$$
, $|-_L\rangle = |-\dots-\rangle$
Logical operators: $Z_L = \bigotimes_i Z_i$ and $X_L = X_i$
Stabilizer: $S_i = X_i X_{i+1}$

Need to correct phase-flip errors

Need to correct phase-flip errors

Repetition code ingredients

- +/- state preparation
- CNOT gate
- Parity measurement

Bit-flip requirements

- Data bit-flips must be exponentially suppressed: data noise bias
- Ancilla bit-flips must also be exponentially suppressed: no error propagation

Logical states: $|+_L\rangle = |++\dots+\rangle$, $|-_L\rangle = |-\dots-\rangle$ Logical operators: $Z_L = \bigotimes_i Z_i$ and $X_L = X_i$ Stabilizer: $S_i = X_i X_{i+1}$

Repetition code ingredients

- +/- state preparation
- CNOT gate
- Parity measurement

Bit-flip requirements

- Data bit-flips must be exponentially suppressed: data noise bias
- Ancilla bit-flips must also be exponentially suppressed: no error propagation
- Bit-flips must remain exponentially suppressed during CNOT: bias-preserving gates

Need to correct phase-flip errors

Logical states:
$$|+_L\rangle = |++\dots+\rangle, |-_L\rangle = |-\dots-\rangle$$

Logical operators: $Z_L = \bigotimes_i Z_i$ and $X_L = X_i$
Stabilizer: $S_i = X_i X_{i+1}$

Repetition code ingredients

- +/- state preparation
- CNOT gate
- Parity measurement

Bit-flip requirements

- Data bit-flips must be exponentially suppressed: data noise bias
- Ancilla bit-flips must also be exponentially • suppressed: no error propagation
- Bit-flips must remain exponentially suppressed during CNOT: **bias-preserving gates**

Phase-flip metrics

Data phase-flip probability: p_{ZD}

Need to correct phase-flip errors

Need to correct phase-flip errors

Logical states: $|+_L\rangle = |++\dots+\rangle, |-_L\rangle = |-\dots-\rangle$ Logical operators: $Z_L = \bigotimes_i Z_i$ and $X_L = X_i$ Stabilizer: $S_i = X_i X_{i+1}$

Repetition code ingredients

- +/- state preparation
- CNOT gate
- Parity measurement

Bit-flip requirements

- Data bit-flips must be exponentially suppressed: data noise bias
- Ancilla bit-flips must also be exponentially suppressed: no error propagation
- Bit-flips must remain exponentially suppressed during CNOT: bias-preserving gates

Phase-flip metrics

- Data phase-flip probability: p_{ZD}
- Total error detection failure probability: p_{ZA}

Repetition code threshold

Practical threshold definition:

- \rightarrow Logical error scales as $p_{ZL} \propto \Lambda^{d/2}$
- $\rightarrow \Lambda = 1$ when fitted for $d \leq 19$
- → Only requires $p_{ZA} + p_{ZD} \le 0.30$
- → Favours ancilla/data error assymetry

Repetition code is <u>very</u> forgiving

Experimental progress towards operating cat qubits

Going below threshold

Reservoir engineering of two-photon dissipation

Requires parametric four-wave mixing

Parametric four-wave mixing

Experimental setup

Experimental setup

Transmon-induced saturation

Saturation due to readout transmon Confirmed in Berdou et al. PRX Quantum (2022)

Transmon-free experimental setup

Problem: how do we readout?

Readout protocol

Wigner distribution

Four-step process:

(1) Displace initial state

(2) Map to cat states while preserving parity (two-ph. diss)

(3) Map parity to coherent states

(4) Readout coherent states

Mapping parity to coherent states

Readout protocol

Exponentially biased qubits

Bit lifetime at > 10 seconds !

Need to correct phase-flip errors

Repetition code ingredients

- +/- state preparation
- CNOT gate
- Parity measurement

Bit-flip requirements

- Data bit-flips must be exponentially suppressed: data noise bias
- Ancilla bit-flips must also be exponentially suppressed: no error propagation
- Bit-flips must remain exponentially suppressed during CNOT: bias-preserving gates

CNOT scheme

CNOT at play

 $p_{ZA}^{CNOT} \approx 0.15 \quad p_{ZD}^{CNOT} \approx 0.15$

Characterizing bit-flips

Bit-flip scaling is limited by leakage while stabilization is turned off.

Solutions

- Further reduce Kerr and dephasing
- Engineer conditional rotation of the two-photon dissipation on the target

Need to correct phase-flip errors

Logical states:
$$|+_L\rangle = |++\dots+\rangle, |-_L\rangle = |-\dots-$$

Logical operators: $Z_L = \bigotimes_i Z_i$ and $X_L = X_i$
Stabilizer: $S_i = X_i X_{i+1}$

Repetition code ingredients

- +/- state preparation **CNOT** gate
 - Parity measurement

Bit-flip requirements

- Data bit-flips must be exponentially suppressed: data noise bias
- Ancilla bit-flips must also be exponentially suppressed: no error propagation
- Bit-flips must remain exponentially suppressed during CNOT: bias-preserving gates

01 Quantum error correction with biased noise qubits

02 Experimental progress towards operating cat qubits

03 Going below threshold

Going below threshold

Logical states: $|+_L\rangle = |++\cdots+\rangle, |-_L\rangle = |--\cdots-\rangle$

Logical operators: $Z_L = \bigotimes_i Z_i$ and $X_L = X_i$

How far are we from the threshold?

To go below threshold:

- Better readout scheme \rightarrow WIP
- Improve bare cavity T₁
- Improve k₂

<u>T₁ degradation under pump:</u>

Parametric effect? Junction modes? Thermalization?...

Stabilizer: $S_i = X_i X_{i+1}$

