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Dynamiqs in a nutshell

An open-source Python library

based on JAX, for the simulation of

• the Schrödinger equation

• the Lindblad master equation

• stochastic master equations

• …

With

• CPU and GPU support

• Batching

• End-to-end differentiability

• Tailored sparse support

• QuTiP-like API
www.dynamiqs.org
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Why need for high-performance simulations?

Numerical integration gets harder with:

• Large Hilbert spaces (many ”small” or few “large” systems)

• Open systems (interacting with environment)

• Fast time-dependencies

• High-dimensional parameter sweeps

Surface code (Google Quantum AI)

Quantum harmonic oscillator

@ Alice & Bob: dissipative cat qubits

Simulating a CNOT = 2 coupled cavities (n=32) + 2 buffer modes (n=8)

N = 32x32x8x8 = 65 536 32GB / density matrix

Inherently dissipative + time-dependent

Time dynamics of quantum systems is essential for:

• Characterization

• Design

• Control optimization

• Understanding of physical phenomena

• …



GPU-acceleration 
and performance
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Why GPUs?

Bottleneck of solving a SE/ME/SME is matrix products (ODE solvers, propagator, Monte Carlo, …)

Example: Euler method for ME

Leverage specialized hardware

CPU GPU

Core1 Core2

Core3 Core4

Multiprocessor 1 Multiprocessor 2
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Batching simulations

For loop Batching

=

(b, n, n)

b simulations of size (n, n) 1 simulations of size (b, n, n)

Example: Batched two-level system

(sweep 3000 parameters)

2.59 s → 44.1 ms

x60 speedup (only on CPU*)

Concise code and practical

*CPU: Macbook Air M2

Enabled by jax.vmap 

+ batched kernels (e.g. cuBLAS)

Parameter sweeps are ubiquitous in characterization, design & control of quantum systems
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Benchmarking Dynamiqs

Full benchmarks: https://github.com/dynamiqs/dynamiqs/pull/704

Set of representative benchmarks of time-dynamics simulations
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Benchmarking Dynamiqs

Full benchmarks: https://github.com/dynamiqs/dynamiqs/pull/704

Set of representative benchmarks of time-dynamics simulations
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Why is Dynamiqs fast?

No Liouvillian vectorization

Sparse DIA format

• Vectorized:

• Linear map:
(equivalent if sparse layout)

Operators are often polynomial in

Efficient sparse storage with (diagonals, offsets) = DIA format

+ coalescent memory accesses

- uncommon storage 



11

Why is Dynamiqs fast?

Matrix multiplication benchmark
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Why is Dynamiqs fast?

No Liouvillian vectorization

Sparse DIA format

Leverage tensor product structure

• Vectorized:

• Linear map:
(equivalent if sparse layout)

Operators are often polynomial in

Efficient sparse storage with (diagonals, offsets) = DIA format

+ coalescent memory accesses

- uncommon storage 

Tensor product of size

• Regular matmul:

• Tensprod matmul:
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Under the hood: JAX and diffrax

Linear algebra on GPUs + automatic differentiation

→ same tools as machine learning 

→ Dynamiqs built on JAX (Google) and Diffrax (Patrick Kidger)

Python JAX

Python file

bytecode

Python Virtual Machine

compiled

executed 

line-by-line by

• Interpretation overhead

• Dynamic typing
• No low-level optim.

Python file

traced

Graph of operations

Hardware-optimized code

optimized, 

compiled

• Fused operations

• Memory access optimisations
• Loop unrolling

All ODE solving is handled by Diffrax, a specialized library built on JAX



Differentiability
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Differentiable solvers

Parameters System Evolved state Real function

Solver

Update parameters Gradient

• Quantum optimal control

• Parameter estimation

• State tomography

• Sensitivity analysis

• …

Project philosophy: fast and reliable building block Computing gradients:

• Automatic differentiation

• Adjoint state method*

• Recursive checkpointing

Fast and reliable, but large memory

Low memory, but slower

Very strong tradeoff (recommended)

*see Gautier, Genois and Blais, arXiv:2403.14765
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Quantum optimal control

Parametrize a pulse 

sequence

Simulate with a model of 

the experiment

Define a cost function 

to maximize

Iterate with gradient 

descent until 

convergence
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Example: transmon readout

• Full cosine model, including Purcell filter

• MW drive on Purcell filter and/or transmon

Objective: optimize dispersive readout of a transmon 

using minimal assumptions

• ~400 parameters (1ns bins x 100ns x 2 drives)

• Hilbert space size ~ 2500 (5 x 5 x 100) 

Difficult numerical problem

• GHz dynamics

• Open quantum system

Gautier, Genois and Blais, arXiv:2403.14765

• Full optimization in ~1 day

• Experimentally realistic pulses

• Interpretable results

• (Re-)discovered readout protocols, 

but optimized

• RWA on drives (simplifies numerical integration) 

Presenting at WKS33 (Optimal control and calibration) – Friday 10am
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Parameter estimation

Parameter spaceData space

Quantum system Measure data Fit parameters

MinimiseMeasureExperimental model with 

Need gradient for efficient parameter search



Accessible API
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A QuTiP-like API

• QuTiP-like API, with small differences when appropriate (e.g. time-dependence)

• Compatible with QuTiP objects

• Smoothly runs on GPUs, computes gradients, or set global settings (matrix layout, precision)
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With many more features…

Solvers

• ODE solvers from diffrax

• Modern ODE solvers (Tsit5, Dopri8, Bosh3, …) 
• Implicit solvers
• Adaptive-step SME solvers

• Symplectic solvers
• Quantum-tailored solvers (Rouchon)

• Easily implement custom solvers
• Custom and optimized sparse format

• JAX implementation

• Low-level sparse CUDA kernels
• Krylov subspace methods for propagators

Gradients

• Compute gradients w.r.t. evolution time

• Compute high-order derivatives (Hessian)
• Freedom over gradient descent method (only 

examples provided)

Utilities

• Support for multiple Hamiltonian formats (constant, 

PWC, modulated, callable)
• Time-dependent jump operators
• User-defined save functions (partial trace, purity, …)

• Plotting functions (automated GIFs)
• All functions work on batched arrays

• Parralelisation across CPUs/GPUs
• Pulse composition API

Library

• Modern software development practices

• Unit tests
• Solver tests against analytical solutions
• Accessible & complete documentation

• Open-source
• Continuous integration

• Automatic benchmarking

No desire to expand the scope of the library…

Users can build on top of Dynamiqs depending on their specific needs!
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03.

Simulation of quantum systems with a focus on 

performance

End-to-end differentiable, using 

automatic differentiation

Focus on the essential: easy-to-use yet 

powerful and with just enough features

DYNAMIQS GITHUB
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