
DYNAMIQS GITHUB

Pierre Guilmin12, Ronan Gautier123, Adrien Bocquet12, Élie Genois3, Bogdan Agrici1

IEEE QCE 24’, Advanced Simulations of Quantum Computations

Dynamiqs, a library for GPU-
accelerated and differentiable quantum 
simulation

3University of Sherbrooke2ENS Paris1Alice & Bob



DYNAMIQS GITHUB

Pierre Guilmin12, Ronan Gautier123, Adrien Bocquet12, Élie Genois3, Bogdan Agrici1

IEEE QCE 24’, Advanced Simulations of Quantum Computations

Dynamiqs, a library for GPU-
accelerated and differentiable quantum 
simulation

3University of Sherbrooke2ENS Paris1Alice & Bob



3

Dynamiqs in a nutshell

An open-source Python library

based on JAX, for the simulation of

• the Schrödinger equation

• the Lindblad master equation

• stochastic master equations

• …

With

• CPU and GPU support

• Batching

• End-to-end differentiability

• Tailored sparse support

• QuTiP-like API
www.dynamiqs.org



4

Why need for high-performance simulations?

Numerical integration gets harder with:

• Large Hilbert spaces (many ”small” or few “large” systems)

• Open systems (interacting with environment)

• Fast time-dependencies

• High-dimensional parameter sweeps

Surface code (Google Quantum AI)

Quantum harmonic oscillator

@ Alice & Bob: dissipative cat qubits

Simulating a CNOT = 2 coupled cavities (n=32) + 2 buffer modes (n=8)

N = 32x32x8x8 = 65 536 32GB / density matrix

Inherently dissipative + time-dependent

Time dynamics of quantum systems is essential for:

• Characterization

• Design

• Control optimization

• Understanding of physical phenomena

• …



GPU-acceleration 
and performance



6

Why GPUs?

Bottleneck of solving a SE/ME/SME is matrix products (ODE solvers, propagator, Monte Carlo, …)

Example: Euler method for ME

Leverage specialized hardware

CPU GPU

Core1 Core2

Core3 Core4

Multiprocessor 1 Multiprocessor 2



7

Batching simulations

For loop Batching

=

(b, n, n)

b simulations of size (n, n) 1 simulations of size (b, n, n)

Example: Batched two-level system

(sweep 3000 parameters)

2.59 s → 44.1 ms

x60 speedup (only on CPU*)

Concise code and practical

*CPU: Macbook Air M2

Enabled by jax.vmap 

+ batched kernels (e.g. cuBLAS)

Parameter sweeps are ubiquitous in characterization, design & control of quantum systems



8

Benchmarking Dynamiqs

Full benchmarks: https://github.com/dynamiqs/dynamiqs/pull/704

Set of representative benchmarks of time-dynamics simulations



9

Benchmarking Dynamiqs

Full benchmarks: https://github.com/dynamiqs/dynamiqs/pull/704

Set of representative benchmarks of time-dynamics simulations



10

Why is Dynamiqs fast?

No Liouvillian vectorization

Sparse DIA format

• Vectorized:

• Linear map:
(equivalent if sparse layout)

Operators are often polynomial in

Efficient sparse storage with (diagonals, offsets) = DIA format

+ coalescent memory accesses

- uncommon storage 



11

Why is Dynamiqs fast?

Matrix multiplication benchmark



12

Why is Dynamiqs fast?

No Liouvillian vectorization

Sparse DIA format

Leverage tensor product structure

• Vectorized:

• Linear map:
(equivalent if sparse layout)

Operators are often polynomial in

Efficient sparse storage with (diagonals, offsets) = DIA format

+ coalescent memory accesses

- uncommon storage 

Tensor product of size

• Regular matmul:

• Tensprod matmul:



13

Under the hood: JAX and diffrax

Linear algebra on GPUs + automatic differentiation

→ same tools as machine learning 

→ Dynamiqs built on JAX (Google) and Diffrax (Patrick Kidger)

Python JAX

Python file

bytecode

Python Virtual Machine

compiled

executed 

line-by-line by

• Interpretation overhead

• Dynamic typing
• No low-level optim.

Python file

traced

Graph of operations

Hardware-optimized code

optimized, 

compiled

• Fused operations

• Memory access optimisations
• Loop unrolling

All ODE solving is handled by Diffrax, a specialized library built on JAX



Differentiability



15

Differentiable solvers

Parameters System Evolved state Real function

Solver

Update parameters Gradient

• Quantum optimal control

• Parameter estimation

• State tomography

• Sensitivity analysis

• …

Project philosophy: fast and reliable building block Computing gradients:

• Automatic differentiation

• Adjoint state method*

• Recursive checkpointing

Fast and reliable, but large memory

Low memory, but slower

Very strong tradeoff (recommended)

*see Gautier, Genois and Blais, arXiv:2403.14765



16

Quantum optimal control

Parametrize a pulse 

sequence

Simulate with a model of 

the experiment

Define a cost function 

to maximize

Iterate with gradient 

descent until 

convergence



17

Example: transmon readout

• Full cosine model, including Purcell filter

• MW drive on Purcell filter and/or transmon

Objective: optimize dispersive readout of a transmon 

using minimal assumptions

• ~400 parameters (1ns bins x 100ns x 2 drives)

• Hilbert space size ~ 2500 (5 x 5 x 100) 

Difficult numerical problem

• GHz dynamics

• Open quantum system

Gautier, Genois and Blais, arXiv:2403.14765

• Full optimization in ~1 day

• Experimentally realistic pulses

• Interpretable results

• (Re-)discovered readout protocols, 

but optimized

• RWA on drives (simplifies numerical integration) 

Presenting at WKS33 (Optimal control and calibration) – Friday 10am



18

Parameter estimation

Parameter spaceData space

Quantum system Measure data Fit parameters

MinimiseMeasureExperimental model with 

Need gradient for efficient parameter search



Accessible API



20

A QuTiP-like API

• QuTiP-like API, with small differences when appropriate (e.g. time-dependence)

• Compatible with QuTiP objects

• Smoothly runs on GPUs, computes gradients, or set global settings (matrix layout, precision)



21

With many more features…

Solvers

• ODE solvers from diffrax

• Modern ODE solvers (Tsit5, Dopri8, Bosh3, …) 
• Implicit solvers
• Adaptive-step SME solvers

• Symplectic solvers
• Quantum-tailored solvers (Rouchon)

• Easily implement custom solvers
• Custom and optimized sparse format

• JAX implementation

• Low-level sparse CUDA kernels
• Krylov subspace methods for propagators

Gradients

• Compute gradients w.r.t. evolution time

• Compute high-order derivatives (Hessian)
• Freedom over gradient descent method (only 

examples provided)

Utilities

• Support for multiple Hamiltonian formats (constant, 

PWC, modulated, callable)
• Time-dependent jump operators
• User-defined save functions (partial trace, purity, …)

• Plotting functions (automated GIFs)
• All functions work on batched arrays

• Parralelisation across CPUs/GPUs
• Pulse composition API

Library

• Modern software development practices

• Unit tests
• Solver tests against analytical solutions
• Accessible & complete documentation

• Open-source
• Continuous integration

• Automatic benchmarking

No desire to expand the scope of the library…

Users can build on top of Dynamiqs depending on their specific needs!



01.

02.

03.

Simulation of quantum systems with a focus on 

performance

End-to-end differentiable, using 

automatic differentiation

Focus on the essential: easy-to-use yet 

powerful and with just enough features

DYNAMIQS GITHUB


	TITLE SLIDE
	Slide 1
	Slide 2

	CONTENT
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	CONCLUSION SLIDE
	Slide 22


