

Quantum control of a catqubit with bit-flip times exceeding ten seconds

arXiv:2307.06617

Ronan Gautier | ETHZ Quantum Paper Club

December, 14th 2023

A primer on cat qubits

A quantum computer for simulating Nature

Feynman's 1981 talk

C The full description of quantum mechanics [...] *cannot be simulated with a normal computer.*

Can you do it with a new kind of computer — a quantum computer? [...] *It's not a Turing machine, but a machine of a different kind.*

Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical.

And by golly it's a wonderful problem because *it doesn't look so easy.*

Richard Feynman at Caltech, circa 1980

The development of superconducting circuits

1981

Shor's algorithm

Quantum Error Correction

Creation of Quantronics

1994

1985

Cooper Pair Box

1999

1995-1997

Transmon

2007

4

From transistors to transmons

Transmon

A fundamental predicament

Inevitable coupling to bath

Quantum error correction

Error discretization theorem

Correcting Pauli errors = correcting arbitrary errors

Discrete qubit codes

Bosonic codes

 $|2\rangle$

Quantum error correction

Error discretization theorem Correcting Pauli errors = correcting arbitrary errors

Discrete qubit codes

 $\mathbf{\overline{\mathbf{v}}}$

Bosonic codes

Google Quantum AI, Nature 2022

How can we encode a harmonic oscillator?

How can we encode a harmonic oscillator?

How can we encode a

How can we encode a

Mirrahimi et al., NJP (2014); Guillaud et al., PRX (2019); Lescanne et al., Nat. Phy. (2019)

Mirrahimi et al., NJP (2014); Guillaud et al., PRX (2019); Lescanne et al., Nat. Phy. (2019)

Mirrahimi et al., NJP (2014); Guillaud et al., PRX (2019); Lescanne et al., Nat. Phy. (2019)

Solution Cat qubits are **exponentially** biased against <u>bit-flip</u> errors

Solution Cat qubits are **exponentially** biased against <u>bit-flip</u> errors

> A repetition code takes care of <u>phase-flip</u> errors

Solution Cat qubits are **exponentially** biased against <u>bit-flip</u> errors

> A repetition code takes care of <u>phase-flip</u> errors

Inner: cat qubits (bit-flips)
 Outer: repetition code (phase-flips)

Protecting cat qubits

Dissipative cat qubits

 \mathbf{O}

 \odot

Ø

- Dissipative stabilization
 - $\mathcal{L} = \kappa_2 \mathcal{D}[a^2 \alpha^2]$
- Two-photon dissipation
 + two-photon driving

An exponentially biased qubit

Exponential suppression of bit-flips in a qubit encoded in an oscillator

Raphaël Lescanne, Marius Villiers, Théau Peronnin, Alain Sarlette, Matthieu Delbecq, Benjamin Huard, Takis Kontos, Mazyar Mirrahimi & Zaki Leghtas ⊠

Nature Physics 16, 509–513 (2020) Cite this article

Reservoir engineering of two-photon dissipation

Requires frequency-tunable four-wave mixing

Frequency-tunable four-wave mixing

Experimental setup

Experimental setup

Exponential suppression of bit-flips in a qubit encoded in an oscillator

Raphaël Lescanne, Marius Villiers, Théau Peronnin, Alain Sarlette, Matthieu Delbecq, Benjamin Huard, Takis Kontos, Mazyar Mirrahimi & Zaki Leghtas ⊠

Nature Physics 16, 509–513 (2020) Cite this article

Saturation due to readout transmon Confirmed in Berdou et al. PRX Quantum (2022)

Macroscopic bit lifetime

Quantum control of a cat-qubit with bit-flip times exceeding ten seconds

U. Réglade,^{1,2,†} A. Bocquet,^{1,2,†} R. Gautier,² A. Marquet,^{1,3} E. Albertinale,¹ N. Pankratova,¹ M. Hallén,¹ F. Rautschke,¹ L.-A. Sellem,² P. Rouchon,² A. Sarlette,² M. Mirrahimi,² P. Campagne-Ibarcq,² R. Lescanne,¹ S. Jezouin,^{1,‡} and Z. Leghtas^{2,§}

 ¹Alice & Bob, 53 Bd du Général Martial Valin, 75015 Paris, France
 ²Laboratoire de Physique de l'Ecole normale supérieure, ENS-PSL, CNRS, Sorbonne Université, Université Paris Cité, Centre Automatique et Systèmes, Mines Paris, Université PSL, Inria, Paris, France
 ³Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

Réglade, Bocquet et al. arXiv (2023)

Readout protocol

M

Wigner distribution

(1) Displace state

(2) Map parity to coherent states

(3) Readout coherent states

Mapping parity to coherent states

Pulse sequence

Readout of coherent states

$$\omega_{\text{pump}} = \omega_b \quad \Rightarrow \quad \hat{H} = g_l \hat{a}^{\dagger} \hat{a} (\hat{b} + \hat{b}^{\dagger})$$

$$\begin{cases} \hat{a}^{\dagger} \hat{a} = 0 : \text{Buffer stays in vacuum} \\ \hat{a}^{\dagger} \hat{a} > 0 : \text{Buffer is displaced} \end{cases}$$

$$u_n \notin a_n \# a_n \#$$

Exponentially biased qubits

Cat qubits are exponentially biased qubits → outer quantum error-correcting code with small footprint

Thank you for your attention!

In 2019, saturation at 1ms (transmon) → In 2023, lifetime at >10s

Coherent control of fringes in a bias-preserving way

