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On the Origin of Gate Errors

Consider the Z gate Hamiltonian with a buffer mode,

Introduce the Shifted Fock Basis

Write master equation in Heisenberg picture

Decouple these equations

with and

Can re-derive Zeno gate errors

gaugequbit Drive on
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Buffer mode useful for more than dissipation engineering

Devised a scheme for autonomous correction of gate errors

Information retrieval through photodetection:

interesting conceptually but limited in practice 

Check out arXiv:2303.00760 for more details


