Combined Dissipative and Hamiltonian Confinement of Cat Qubits

Ronan Gautier, Alain Sarlette, Mazyar Mirrahimi

QUANTIC, Inria Paris

arXiv:2112.05545

Bloch Sphere Representation of a Cat Qubit

Cat states: coherent superposition of coherent states in a quantum oscillator

Cat qubits are exponentially noise-biased towards phase-flips

(Experimental data from Lescanne, Leghtas et al., 2019)

Confining a cat qubit with engineered Hamiltonians or dissipation

To confine an oscillator to the cat qubit codespace, two main approaches exist.

Two-photon dissipation $\hat{\mathcal{L}}_2 = \mathcal{D}[\hat{a}^2 - lpha^2]$

- $C_{\boldsymbol{\alpha}}$ is a subspace of fixed points

 $\hat{\mathcal{L}}_2 \hat{\rho} = 0 \quad (\forall \hat{\rho} \in \mathcal{C}_\alpha)$

- Any initial state converges asymptotically towards $\,C_{\alpha}\,$

 $\hat{\rho}(t) \xrightarrow[t \to \infty]{} \hat{\rho}_{\infty} \in \mathcal{C}_{\alpha}$

Autonomous stabilization

 $\mathbf{C}_{\alpha} = \operatorname{span}\{|+\alpha\rangle\langle+\alpha|, |+\alpha\rangle\langle-\alpha|, |-\alpha\rangle\langle+\alpha|, |-\alpha\rangle\langle-\alpha|\}$

Kerr Hamiltonian $\hat{H}_{\text{Kerr}} = K(\hat{a}^{\dagger 2} - \alpha^{*2})(\hat{a}^2 - \alpha^2)$

• $|\pm\alpha\rangle$ are degenerate eigenstates

 $\hat{H}_{\mathrm{Kerr}} \left| \pm \alpha \right\rangle \propto \left| \pm \alpha \right\rangle$

• $|\pm \alpha\rangle$ are gapped from other eigenstates $|E_{|\pm \alpha\rangle} - E_{|\psi\rangle}| \gg \kappa_{\rm noise}$

Gap protection (adiabatic theorem, perturbation theory)

Kerr confinement provides low-error gate designs, but is subject to thermal and dephasing noise.

Combining Dissipative and Hamiltonian confinement

To benefit from the best of both worlds, we could use both confinement methods simultaneously

New cat qubit Hamiltonian confinement coined <u>Two-Photon Exchange</u> (TPE)

$$\hat{H}_{\text{TPE}} = g_2(\hat{a}^2 - \alpha^2)\hat{\sigma}_+ + \text{h.c.}$$

- Gapped Hamiltonian
- Degenerate subspace given by the cat qubit

Gautier et al., arXiv (2021)

 10^{3}

The combined confinement schemes are investigated at the bias-preserving working points, i.e. $K/\kappa_2 = 0.3$ and $g_2/\kappa_2 = 10$

Single-qubit Z gate

$$\dot{\rho} = g\mathcal{L}_{\rm conf}\rho - i[\varepsilon_Z(t)\hat{a}^{\dagger} + \varepsilon_Z^*(t)\hat{a}, \rho]$$

Two-qubit CNOT gate

$$\dot{\rho} = g \mathcal{L}_{\rm conf}^{(co)} \rho - i [\hat{H}_{CX}, \rho]$$

- Up to x100 two-qubit gate fidelity improvement
- Reduced leakage compared to dissipative gate designs

Gautier et al., arXiv (2021). Threshold calculation by Jérémie Guillaud.

Thanks for your attention!

arXiv:2112.05545

Mazyar Mirrahimi's invited talk | Session Z40 | Friday 12:30PM

Engineering a combined TPE and dissipative confinement

Potential energy of the ATS (Assymetrically Threaded SQUID) $U(\varphi) = \frac{1}{2}E_L\varphi^2 - 2E_J\left[\varepsilon(t)\sin(\varphi) - \eta\cos(\varphi)\right]$

Dissipative cat qubit circuit design

Combined TPE + Diss. circuit proposition

Bit-flip induced by thermal and dephasing noise

Why is Kerr confinement subject to thermal and dephasing noise?

- 1 System initially in the cat codespace
- 2 At t=0, thermal excitation event
- 3 All Kerr eigenstates are populated
- 4 Dephasing of +/- branches induces bit-flip

- Suppressed exponentially for $|\alpha|^2\gtrsim 4Kn$
- Diverge with n

Two-Photon Exchange Hamiltonian confinement

New cat qubit Hamiltonian confinement coined <u>Two-Photon Exchange</u> (TPE)

$$\hat{H}_{\text{TPE}} = g_2(\hat{a}^2 - \alpha^2)\hat{\sigma}_+ + \text{h.c.}$$

- Gapped Hamiltonian (adiabatic theorem)
- Square root scaling of energies

- Suppressed exponentially for $|\alpha|^2\gtrsim 4Kn$
- Bounded by g_2 !

